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Individual Coursework

I. OVERVIEW

This project used a state-based control architecture to de-
velop an autonomous robotic system [12]. To simplify com-
plex behaviours the robot’s behaviour was separated into oper-
ational phases including searching, navigating, collecting and
depositing items. This separation created modularity, allowing
the robot to focus on specific tasks without interference,
improving performance and enabling future developments to
the solution.

Transitions were determined by real-time sensor data, Li-
DAR scans provided obstacle detection enabling real-time
navigation adjustments ensuring safe travel [6]. Camera inputs
dynamically identified items and zones based on their prop-
erties, and odometry data ensured accurate positioning and
orientation [2]. By separating data processing to the relevant
states, this optimised decision-making, reduced computational
requirements and improved efficiency [7].

This solution improved performance through state-specific
checks and logic. When searching rotational scans were used
to detect objects, and during navigation dynamic path ad-
justments were made allowing for efficient navigation while
avoiding collisions [3]. This allowed the robot to respond to
challenges, like lost targets and other robots, without failure.

This approach prioritised modularity, adaptability and scal-
ability to provide effective task completion. This solution
supports multi-robot system, balancing real-time collision
avoidance with efficient search and navigation methods [11].
Ultimately providing an effective and robust solution for
autonomous item collection and deposition.

II. ARCHITECTURE

Fig. 1. Autonomous Robot System Architecture Diagram

The robot controller combines different components to pro-
vide successful completion of this project, through interactions
between the robot and its environment.

The actuator uses the Twist class to directly control the
robots movement based on the collected data and the robots
current state, allowing for accurate navigation in its environ-
ment to complete objectives. The provided services are utilised
allowing the robot to interact with it’s environment, collecting
and offloading items as required.

A finite state machine is used to control and implement the
robots actions. Each state is designed to perform a specific task

and upon completion transition into another state, that is based
upon data from sensors and it’s current state. All states have
fallback methods to previous states allowing for continuous
operation in cases of failure such as lost items or zones.

The sensors gather environmental data crucial for safe
navigation and efficient completion of objectives. The LiDAR
sensor detects the robots proximity to obstacles allowing for
dynamic adjusts to the robots movement, avoiding collisions
and maintaining accurate navigation towards the targeted ob-
ject. The RGB camera gathers data about all items, zones, and
robots, this provides essential data used to navigate through
the environment towards the targeted object effectively as
possible. The odometry sensor provides accurate localisation
and position tracking for the robot to enable navigation.

To facilitate multi-robot collaboration, multiple topics are
utilised to share information, this prevents any ineffective
decision-making about item and zone selection resulting in
a more efficient system. The ’accepted colours’ topic stores
which coloured item each zone accepts, preventing a robot
from attempting to offload an item in the incorrect zone. The
robot item topic ensures that robots are not attempting to
collect the same items as one another reducing the likelihood
of collisions between robots and improving overall efficiency.

III. CONTROL

The RoboChart state machine describes the robots control
system for transitioning between different states [10]. These
transitions are triggered through object detection via the robots
sensors and item interactions, ensuring a continuous flow be-
tween states with fallbacks to prevent the robot from becoming
stuck in a single state. Each state performs actions to reach the
states success criteria and complete the overall task [5] [8].

The initial searching-without-item state ensures the robot
is in a safe position to rotate, then it rotates until an item
is detected. Upon successful detection of an item, the robot
transitions into navigating-to-item where it uses the cameras
perception of the item to alter its movement to successfully
navigate to the item. Whilst the robot is navigating, it performs
collision avoidance methods to avoid other robots and obsta-
cles. If the robot loses track of the item the state is reverted
back to searching-without-item until an item is detected. Upon
reaching the item the robot transitions into the collecting-
item state where the robot attempts to collect the item, if
successful it transitions into the searching-with-item state, or
if unsuccessful it transitions back into navigating-to-item and
reattempts the collection.

The searching-with-item state is similar to the initial state
and performs the same actions however, this state is looking
for a zone to offload the item. Having located a zone the robot
transitions into the navigating-to-zone state which similar
to the navigating-to-item state navigates towards the zone
utilising the cameras perception and avoiding an obstacles



2

or robots as necessary, until the robot detects that the zone
is close enough to offload the item and transitions into the
depositing-item state to offload the item. If unsuccessful the
robot returns to the navigating-to-zone state and reattempts the
offload, if successful the robot transitions into the searching-
without-item state and the process restarts.

Fig. 2. RoboChart Control Diagram

IV. EVALUATION

To evaluate how this system performed, simulations were
used to provide visual data such as collision avoidance,
navigational planning and item and zone selection. Alongside
this, a complexity analysis was performed to evaluate the
efficiency of the algorithm. Quantitative metrics were collected
to further analyse performance gaining numerical insights into
specific factors. This collection of data provides a wide range
of information allowing a thorough evaluation of this systems
performance across multiple areas.

During simulations, the system consistently avoided any
collisions whilst effectively achieving its objectives, demon-
strating robust collision avoidance. This was achieved through
LiDAR obstacle detection and dynamic navigational adjust-
ments, real-time data was used to alter the robots velocity
whilst continually navigating towards the target. This provided
effective navigation without disruptions leading to efficient
task completion.

Throughout simulations the robot gathered sensor data to
select items and zones. All items in view were analysed and
scored based on various factors including value, diameter,
and distance for items, and size and distance for zones. This
analysis happened throughout navigation allowing for new data
to dynamically change the targeted object. The simulations
demonstrated that the robot altered its path ensuring the
highest scoring object was always selected. A problem with
this system was that the robot could not target an object
outside its field of view, resulting in a potential to navigate past
items. A potential solution would be using multiple cameras
to provide a 360° view of the environment which would not
only improve item and zone selection but also improve safety
as these cameras could be combined with LiDAR sensors to
accurately map the environment.

The complexity analysis of this system determined that op-
erations including navigation, collision avoidance, and objects

searches had a time complexity of O(n). Searching for items
and zones involved iterating through all detected objects to
determine the best one for navigation, and navigation itself
involved scoring each object resulting in an overall time
complexity of O(n). The space complexity of this system is
dependant on the stored object lists, scaling with the number
of objects detected, and resulting in a space complexity of
O(n). While the constant sized sensors such as LiDAR have a
complexity of O(1), the worst case scenario relating to items
and zones result in an overall space complexity of O(n).

The quantitative data collected during multiple simulations
lasting approximately 10 minutes provided various metrics
used to evaluate this system. The average time taken and
distance travelled to collect and offload any item was 27.6
seconds and 3.3 meters with averages for collection being
13.1 seconds and 1.7 meters and for offloading being 13.5
seconds and 1.6 meters. However these values differed be-
tween the different coloured items. This difference is due to
the increased distanced between the item spawn location and
its corresponding zone.

The average time taken by all robots to travel one meter
was 8.36 seconds, however robot1 had an average of 6.22
seconds, robot2 an average of 8.25 seconds and robot3 an
average of 8.45 seconds. This suggests that robot1 encountered
fewer obstacles or robots during simulations resulting in
easier navigation with less potential collisions. The simulations
themselves corroborate this hypothesis as robot1 operated in
larger more open spaces than the other robots.

Once a robot collected an item, it then exclusively focused
on items of that colour. This strategy distributed the robots
across the environment in an attempt to reduce potential
collisions between robots and the complex avoidance methods
required to avoid each other. During simulations, robots rarely
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had to navigate around each other, significantly improving
their overall navigational efficiency.

V. SAFETY AND ETHICS

The ethical and safety implications of a robotic system
which interacts with an environment are significant and must
be considered [1]. In terms of safety, ensuring the robot
operates and interacts with the environment without creating
additional risks to other robots and humans in real-world
scenarios. The system utilises various sensors and algorithms
to avoid collisions at all costs. However, in real-world scenar-
ios additional systems would have to account for unexpected
sensor failures or environmental changes. The robot must have
emergency protocols to manage these unexpected changes
such as emergency stop functionality or emergency homing. In
real-world scenarios, the impact of a failure is much greater
and could result in devastating impacts, so robust testing is
required to ensure reliability to prevent failures [9].

The ethical considerations for this system must consider the
data privacy implications of using a camera and sensors. These
devices could accidentally gather personal information which
must be safeguarded in a real-world scenario, specifically
if identifiable data is collected about specific locations. The
robotic system must also operate without bias to ensure
fair decisions are made, specifically in environments when
involving sensitive or critical decisions.

This system utilises robust safety protocols to ensure safety
measures are successful through the integration of multiple
sensors and emergency features. The system avoids collecting
personal data by only processing data relevant to the com-
pletion of the task, this also ensures the system is free from
bias by reducing the effect of external factors on the data. The
system would have to be tested in a variety of environments
with a variety of data to ensure successful obstacle detection
against different backgrounds and colours. Due the the dy-
namic nature of the real-world, sensor redundancy would be
required alongside robust error handling algorithms to account
for dynamic obstacles such as humans or animals [4].

VI. SIMULATION SCENARIO

A. Scenario 1 - Standard Operating Conditions

This scenario evaluated all system aspects including colli-
sion avoidance, item and zone selection, navigational planning
and multi-robot coordination. A overall focus on the system
allowed a complete evaluation, aiming to achieve efficient item
collection and offload. Creating a benchmark for comparisons
between scenarios by ensuring all components functioned
successfully in ideal conditions.

B. Scenario 2 - Reduced Zone Operation
This scenario focused on the zone selection processes

impact on performance. Robots only detected active zones,
preventing inefficiencies from incorrectly offloading items.
Location a zone where items had previously been of-
floaded,preventing an item from being offloaded in multiple
zones, stopping other items being offloaded at all. This eval-
uates the systems adaptability, robustness of decision-making
algorithms, and multi-robot coordination.

C. Scenario 3 - Sensor Noise Simulation
This scenario tests the robustness and reliability of the robot

despite sensor noise. The robot uses constant sensor updates
to track object locations, enabling navigation despite inaccu-
racies. Recovery methods allowed robots to find new objects
and retry failed collections and offloads until completion. This
reflects the real-world and the robots ability to function in less
than ideal environments, testing error handling and failures due
to poor sensor data.
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D. Scenario 4 - Obstacle Free Environment

This scenario maximised the navigational efficiency without
the need for obstacle avoidance. Allowing robots to travel
in direct paths maximising velocity and minimising deviation
resulting in maximum task efficiency. The average total num-
ber of items collected increased from 66 to 72 demonstrating
the time consumption to avoid collisions. This data evaluated
the maximum performance of the core processes, providing
information about how environmental conditions affect the
systems performance.

E. Scenario 5 - Reduced Zone Operation and Sensor Noise
Simulation

The strategy focuses on the robots performance in a non
ideal environment with inactive zones and sensor noise. The
recovery methods and constant sensor updates provides relia-
bility in case of failures ensuring that tasks are still successful
despite the challenges. This demonstrates the systems effec-
tiveness in conditions similar to the real-world.
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