Individual Project Report

Y3919217

Abstract—This report details how I designed and constructed a
neural network to classify images of flowers-102 dataset correctly.
To complete this I created a convolutional neural network,
training and validating each model iteration to improve accuracy
then finally testing the model. I achieved an accuracy score of
75.2% on the flowers-102 test set.

I. INTRODUCTION

In this project, I aimed to construct a neural network
classifier that would take an image of a flower as an
input, from the flowers-102 dataset and correctly output the
classification of that flower. This was accomplished by training
the classifier on the training data, validating after each epoch
on the validation set, and testing the model against the test set
to determine its accuracy. Historically this task has been under-
taken using single-layered neural networks until multi-layered
neural networks were available via back-propagation algo-
rithms. When convolutional neural networks were developed,
and combined with deep learning algorithms they provided the
next major development for image classification. From here
specific networks began to develop providing innovations and
improvements [5].

Image classification is an important machine learning prob-
lem due to its wide range of applications. For instance, in
healthcare image classification can help diagnose treatments
and diseases in medical scans. Vehicle automation heavily
relies upon image classification to correctly detect objects in
real-time to provide navigation. To tackle this image classifi-
cation problem I constructed a convolutional neural network
and adapted it to reduce overfitting and increase accuracy.

II. METHOD

Initially, I followed a PyTorch tutorial [6] giving myself an
understanding of the processes and methodology required to
complete this task. I created a convolutional neural network
as they have many different filters which process information
quickly and can learn to detect features of an image without
including manual feature extraction. I began with a 3-layered
convolutional neural network and for each layer, an activation
function, a max pooling layer followed, and a single fully
connected layer. By training the model and adding extra layers,
I reached a model with 5 convolutional layers going from
3 input to 512 output features but still one fully connected
layer. This is where my model began overfitting so I added
batch normalisation after each layer and dropout after the final
layer to improve regularisation. For my optimiser I initially
chose SGD, after some research I changed this to Adam which
provided more accurate results[4].

I added multiple linear layers to my fully connected layers,
with an activation function after each layer, with dropout

at the end of the layers enabling the model to learn more
complex patterns and reduce overfitting. Resulting in 2 linear
layers stepping from 2048 features down to the 102 flower
classes. Once my model had been set up, I began tuning the
hyperparameters of the network to improve accuracy and gen-
eralisation[2]. Altering my dropout values until I found a more
optimal value, settling on 0.5 which provided more accurate
results and reduced overfitting. I adapted the learning rate
to improve performance, discovering that a slower learning
rate improved the accuracy of my model. However, a greater
number of epochs were required to reach the same accuracy
score. To combat this I implemented an adjustable learning
rate which slowed down throughout the training process if
the validation score didn’t increase for a chosen number of
epochs. However, this reduced the test accuracy so I slowed the
learning rate after a specified number of epochs. For my loss
function, I chose to use Cross-Entropy Loss, as it is popular
for multi-class classification tasks, the formula for which is
S¥yclog(p.) where N is the number of classes, y. is the
probability distribution of the classes and p,. is the predicted
probability distribution output by the model.

Having tuned the hyperparameters of the model, I started
to augment the training data to improve test accuracy, re-
duce overfitting and keep the validation accuracy as close
to the training accuracy as possible. The transforms I added
attempted to increase the size of the training data set which
would provide more accurate classifications[1].

This all culminated in a 10-layered convolutional neural
network, the layers were paired, where the first layer increased
in size and had batch normalisation, an activation function
and a max pooling layer after it, and the second layer in the
pair remained at a constant size and had batch normalisation
and an activation function following it. Following all the
convolutional layers dropout was added. The fully connected
layers consisted of flattening the convolutional layers and then
3 linear layers with the first layer having batch normalisation
and an activation function, the second layer having dropout
and the third layer having batch normalisation, dropout and
an activation function.

III. NEURAL NETWORK ARCHITECTURE

Fig. 1. Diagram of neural network architecture[3]

IV. RESULTS AND EVALUATION

To evaluate my model I used the default train/validation/test
split, after training each epoch the accuracy, total loss and
epoch loss are calculated for the training data, then the epoch is
evaluated against the validation data, the metrics for accuracy
and the average loss is calculated on the validation set. As the
model is being trained the validation accuracy is used to show
the model performance until all epochs have been completed,
the model then evaluates against the test dataset which is the
final metric that determines the quality of the model. Having
collected all this data a graph of training vs validation loss and
accuracy was plotted to help visualise the training progression.

My experiments were all performed within a Jupyter note-
book on a local machine, with the hardware used for each
experiment being an AMD Ryzen 5 3600 CPU, NVIDIA
Geforce GTX 1050Ti, and 16GB of RAM. The model is
trained on the training set of data, for each epoch the model is
then validated against the validation data. Once the model has
finished training, it is tested against the test data to find the
accuracy and the average loss. My initial results from the basic
convolutional neural network with SGD as my optimizer were
not very accurate and simply changing the optimizer to Adam
resulted in a greater increase in accuracy. Running further
training, the results gathered demonstrated that my model was
greatly overfitting as my training accuracy would be reaching
100% while the validation accuracy was only reaching around
20%. Upon slowing my learning rate down and seeing an
improvement in accuracy I concluded that taking more time
to learn the features of a flower would provide better results.

TABLE I
RESULT COMPARISON BETWEEN DIFFERENT MODELS

Validation Accuracy | Test Accuracy
Epoch 20 50 100 100

Model 1 223 28.6 32.1 26.9
Model 2 428 493 517 46.3
Model 3 334 413 472 43.4
Model 4 31.6 405 4938 48.1

Model 1 consisted of 3 convolutional layers, each with
an increasing number of features starting from 3 and ending
at 128 features. It also had a single linear layer. Model 2
had 5 convolutional layers, with each layer also increasing
in features and doubling the number of features resulting
in 512 features. The number of linear layers increased to 2
hidden layers and a final output layer stepped down from
2048 to 1024 features before dropping to the number of
classes. Model 3 had 8 layers which was the first model that
utilized a paired layer configuration. In this configuration the
number of features increased every other layer, resulting in 256
features, additionally, this model also added another hidden
layer dropping down to 512 features before continuing down to
the number of classes. Model 4 contained 10 total layers in the
same pair configuration which resulted in 512 total features,
this model also added batch normalisation and dropout to the
hidden layers.

Having fine-tuned the hyperparameters of the model I
began to augment the training data to improve the results the

following table shows the results for different augmentations
I tested.

TABLE I
RESULT COMPARISON BETWEEN DIFFERENT DATA AUGMENTS

Validation Accuracy | Test Accuracy

Epoch 100 200 500 500
Augmentation 1 354 47.8 547 48.6
Augmentation 2 30.2 503 583 55.8
Augmentation 3 36.7 492 614 59.3
Augmentation 4 379 56.6 70.8 66.4
Augmentation 5 27.5 472 679 62.1

There were four different augmentations used in this pro-
cess. Augmentation 1 included the following transforms: a
conversion to tensor; normalization with mean=[0.485, 0.456,
0.406] and std=[0.229, 0.224, 0.225]; resize to 256 x 256;
random rotation; and a random vertical flip. Augmentation 2
included the previous transforms and added a random horizon-
tal flip, random adjust sharpness and colour jitter transforms.
Augmentation 3 included the previous transforms adding ran-
dom auto contrast and changing the value of the random
rotation transform from 15 to 180 degrees. Augmentation 4,
added the random affine transform. Finally, Augmentation 5
added the random erasing and random perspective transforms.

I achieved an accuracy of 75.2% in my final model after
training 1000 epochs for 416 minutes (6 hrs 54 minutes). I
used Adam as my optimization algorithm with a learning rate
of 0.0001 and a weight decay of 0.0001. The batch size for
training data was 8, while for validation and test data, it was
32. I implemented a scheduler that decreased the learning rate
by 0.99 after 450 epochs. I used several data transforms for
the training data including resize to 256 x 256; colour jitter
with values of brightness=0.2, contrast=0.2, saturation=0.2,
hue=0.1; random affine with values degrees=15, translate=(0.1,
0.1), scale=(0.8, 1.2); random rotation up to 180 degrees;
random auto contrast; random adjust sharpness with values
of (1.5, 0.5); random horizontal flip; random vertical flip; to
tensor; random erasing; random perspective with values of 0.2
for the distortion scale and 0.5 for p; normalization with mean
= [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. For
the validation and test datasets, I used the same normalization,
resize and to tensor augmentations as used for training data,
but without any of the other augmentations.

V. CONCLUSION AND FURTHER WORK

The architecture I chose was a good choice as it generalises
well, does not overfit to the training data and the difference
between the training accuracy and validation accuracy remains
close throughout the training. This meant I achieved good
performance with my model. Ensuring the difference between
training and validation accuracy remained as small as possible
greatly improved the overall accuracy. However, this meant
I had to wait for a while for training to be completed and
see whether an improvement was made. The addition of
plotting a graph helped project potential results without having
to run a larger amount of epochs. To further increase my
classification accuracy I should further research and utilise
pre-trained models and tune the hyperparameters as required.

(2]

(3]

(5]

[6]

REFERENCES

PyTorch. “Illustration of transforms.” (2017), [Online].
Available: https : // pytorch . org / vision / main / auto_
examples/transforms/plot_transforms_illustrations . html
(visited on 05/10/2024).

S. Ramesh. “A guide to an efficient way to build neural
network architectures- part ii: Hyper-parameter selec-
tion and tuning for convolutional neural networks using
hyperas on fashion-mnist.” (2018), [Online]. Available:
https://towardsdatascience.com/a- guide-to- an-efficient-
way - to - build - neural - network - architectures - part - ii -
hyper-parameter-42efcaOle5d7 (visited on 05/03/2024).
A. Lenail. “Nn-svg.” (2019), [Online]. Available: https:
// alexlenail . me /NN - SVG/ AlexNet . html (visited on
05/16/2024).

D. Giordano. “7 tips to choose the best optimizer.”
(2020), [Online]. Available: https://towardsdatascience.
com/7-tips-to-choose-the-best- optimizer-47bb9c1219¢
(visited on 05/02/2024).

N. Kushwaha. “A brief history of the evolution of im-
age classification.” (2023), [Online]. Available: https :
/ / python . plainenglish . io / a - brief - history - of - the -
evolution- of - image- classification-402c63baf50 (visited
on 05/01/2024).

PyTorch. “Pytorch tutorial: Building your model (be-
ginner).” (2024), [Online]. Available: https://pytorch.
org/tutorials /beginner/basics /buildmodel_tutorial . html
(visited on 04/30/2024).

