Department of Computer Science

; :
o) UNIVERSITY

>
& 7ok

This is a report on a project submitted for the degree of
MEng in Artificial Intelligence in the Department of Computer
Science at the University of York.

Autonomous Navigation System
for Vessels in Channels Using
Neural Networks Evolved with

Genetic Algorithms

Thomas Haslam

28th April 2025

Supervisor: Dr Poonam Yadav

Acknowledgements

| would like to thank my supervisor for all the advice they gave me during
this project.

Contents

[Executive Summary|

1__Introduction|

(1.1.1 Disruptions due to navigational issues|
[1.1.2 Aiding Recreational Sailors|
[1.2 Success Criteria and Objectives|

2 Background and Literature Review|
[2.1 Background Information|.
[2.1.1 Navigational Systems|
[2.1.2 Neural Networks Evolved with Genetic Algorithms|

[3 Methodology and Implementation|

[3.1 Neptune’s Simulation Environment and Robot Controller| . .
(3.2 Neptune’'s Neural Network|
[3.2.1 Deep Deterministic Policy Gradient Network|

2.2 __Feed-Forward Neural Networkl

2. nvolutional Neural Networkl

[3.3 Neptune’s Genetic Algorithm|
[3.4 Training the Neptune system|

4__Results and Evaluation|

[4.2 Benetits of Pre-training the Neural Network|
[4.3 Neptune’s Final Performance|

©__Conclusionl
5.1 Project Outcomes|

[A.1 Navigation Channel Designs|

[A.2 Neural Network Designs|
[A.3 Genetic Algorithm Code|.

Contents

List of Figures

3.1 Convolutional Neural Network Pseudocodel 17
[3.2 Genetic Algorithm Pseudocode|. 18
[3.3 Neural Network Iraining Pseudocode| 20
{4.1 A graph showing the lack of deviations in the DDPG neural |
networkl 21

[4.2 A graph showing the plateaus of the DDPG neural network|. 22
[4.3 Graphs showing the improved performance of a feed-forward [
[neuralnetworkl. oL 23
{4.4 A graph showing a feed-forward neural network stuck in local |
optimal 23

[4.5 A graph showing the improvement in performance for the [
average population| 24

[4.6 A graph showing a full simulation with a CNN architecture |
and the distribution of the final generation’s fitness scores| . 24

[4.7 Graphs showing the fithess Scores and metrics for the initial [
generation of a pre-trained model vs a random Initialisation [
modell 25

[4.8 A graph showing the loss perepoch| 26
[4.9 A graph showing the performance of a pre-trained model |
overgenerations|. Lo oL 26

[4.10 A graph displaying the performance of the model over gen- [
[erafions on thebasicchannel 27
[4.11 A graph displaying the performance of the model over gen- |
[erationsonastandardchannel 28
[4.12 A graph displaying the performance of the model over gen- |
erations on a complex channel 28

[4.13 A graph displaying the performance of the model over gen- [
rations on ndardchannel 29

[4.14 A graph displaying the performance of the model over gen- |
erations on a realistic, unseen channel|. 29

|[A.1 Standard Channel Design|. 32
|[A.2 Basic Channel Design|. 33
IA.3 Complex Channel Design| 33
|[A.4 Realistic ChannelDesign| 34
[A.5 DDPG Agent Pseudocode| 35

List of Figures

Actor and Critic Neural Network Archi res|. 35
[A.7 Actor and Critic Loss Functions and Soft Update Functions| 36
|A.8 Replay Buffer Architectures| 36
IA.9 Feed Forward Neural Network Pseudocodel 37
|A.10 Basic Neural Network Architecture 37

.11 Convolutional Neural Network Archi rel ... 38
.12 Paren lectionCode|l, 39

13 Cr ver and M ion Functions| 39
[A.14 Metrics Collection Process| 40
IA.15 Metrics Collected throughout Navigation| 40
16 Fitn lculations for simulations| 41
|A.17 Additional graphs showing the plateaus of the DDPG neural [

[networkl 41
|A.18 Additional graphs showing a feed-forward neural network |

stuck inlocaloptimal. 42

List of Tables

2.1 A table comparing methodologies against my final imple-

Executive Summary

This project presents the development of an autonomous navigation system
designed for nautical vessels operating in narrow channel environments
such as ports, harbours, and passages. Neptune’s system utilises a convo-
lutional neural network evolved through genetic algorithms to create a safe,
effective, and generalised navigational model.

The motivation for this project stems from real-world issues caused by
navigational failures and errors, notably the Suez Canal blockage in 2021,
which resulted in an estimated USD $54 billion in trade losses. Incidents like
these demonstrate the need for autonomous systems to aid in navigating
these complex passages safely, reducing the likelihood of collisions and
reliance on human pilots. The systems designed for use in larger vessels to
aid in complex navigation can also be utilised in smaller vessels, providing
recreational sailors with the added peace of mind of an autonomous system
to navigate difficult channels, which otherwise would require constant
attention and careful planning.

The primary objectives of this project were to develop a system capable of
navigating a channel without any collisions occurring, as the safety of the
crew and vessel is of utmost importance, real-time responses to changing
environments, and generalising across various environmental features to
allow for navigation across all environments all while providing performance
similar to a trained human pilot. To achieve these objectives, a physics-
based simulated environment was initialised in Gazebo, and a TurtleBot3
Waffle Pi robot, equipped with LiDAR, odometry, and camera sensors, was
used to train and test the various models developed, all utilising ROS2 to
control and manage these systems.

Once the required environment was set up, the focus shifted to designing
the neural network responsible for controlling the vessel’s movements. The
initial design used a deep deterministic policy gradient (DDPG) model;
however, the performance demonstrated did not meet the basic success
criteria of navigating any channel. A simple feed-forward neural network
provided greater navigational performance, but again, this model could not
navigate a channel safely and ultimately, a one-dimensional convolutional
neural network was implemented. This model could accurately capture
spatial information from the presented LiDAR data, allowing for safe and

Executive Summary

effective navigation of channels. This network evolved with genetic al-
gorithms, utilising population-based training, elitism, tournament selection,
crossover and mutation to gradually improve the model’s performance over
generations.

The training process was greatly improved by pre-training the network
before running the genetic algorithm. This pre-training stage involved col-
lecting LiDAR captures and the corresponding linear and angular velocities;
then, the model was trained on this data, and the resulting performance
allowed the genetic algorithms to maximise the performance across the
whole generation rather than focusing on channel exploration. This change
resulted in a system which could successfully navigate multiple channels in
a significantly reduced time, allowing for further testing and evaluations to
be made. The performance of each individual in a population was evaluated
against various metrics, including time taken, distance travelled, waypoint
progression and navigational smoothness, providing a resulting score that
could compare all individuals.

Across various channels and different environments, the system displayed
performance comparable to manual channel navigation, and could also
generalise to various environments, including unseen channels through
accurate detection of various channel features, indicating its potential use
for real-world applications. The Neptune system met the majority of laid-
out objectives and provided a baseline to expand further on this system.
This demonstrated performance resulted in a system that could be used
to aid sailors when navigating complex channels, ports and harbours,
and with further testing in complex environments, the Neptune system
could potentially replace a human navigator, allowing for a full autonomous
navigation system.

The future work should include various tests using nautical environments
with a variety of weather conditions, including strong wind, currents, and
waves, as this would further evaluate the system’s performance. Alongside
these tests, a focus on integrating COLREGs (International Regulations
for Preventing Collisions at Sea) into the system would aid in the decision-
making process and result in a safer system, which is essential for a
real-world implementation. Once these tests have been implemented,
the first real-world land-based tests could take place, providing the first
real insight into how this system truly performs, as comparisons between
current systems can be made. Once the land-based environments have
been tested, the progression onto nautical environments would complete
the evaluation process for this system as a whole, allowing for the advanced
testing required to enhance the safety and efficiency of vessels navigating
in narrow channels.

Statement of Ethics

This project, titted Autonomous Navigation System for Vessels in Channels
Using Neural Networks Evolved with Genetic Algorithms, follows the ethical
principles and considerations outlined by the Department of Computer
Science at the University of York.

The data utilised in this project was generated from a simulated Gazebo
environment and was controlled manually with no participation of any
human subjects; therefore, no personal or sensitive data was collected,
stored or processed. The LiDAR and sensor data captured for training
and evaluation purposes were artificial numeric data only produced for
this project. If the system were implemented in the real world, further
considerations would have to be taken about how the environmental data,
such as LiDAR captures and velocity recordings, is captured, as this would
introduce new ethical and legal concerns. This would include ensuring that
the collected data does not capture any personal data by accident, securing
the consent from the channel when collecting the data, and complying with
any relevant local laws. Following on from the data collection process,
the data storage process would require strict protocols to prevent any
unauthorised access and misuse.

The autonomous navigation system was trained and tested within a physics-
based simulation environment, meaning that no physical risk was posed to
any individuals, robots or the environment. However, considerations have
been made concerning the real-world impacts of this system. Further real-
world testing would require stricter safety regulations and further testing to
ensure no damage due to collisions. The developed system is designed for
practical maritime applications, including improving safety and accessibility,
and the ethical implications of dual-use applications such as military or
surveillance have been considered. The system’s design prioritises safety,
but any future developments would have to ensure that maritime laws and
ethical artificial intelligence principles are followed.

Whilst the system developed shows promise in simulations, limitations such
as performance in varied weather conditions and real-world deployment
challenges have been considered, and further ethical reviews would be
necessary if real-world testing and evaluation were to take place.

10

1 Introduction

1.1 Motivation

1.1.1 Disruptions due to navigational issues

Nautical transportation is vital to global trade, contributing to 80% of all
trade by volume and two-thirds of trade by value [1]. Approximately 12
billion tons of goods were transported via the sea in 2022. The Suez Canal
is one of the most critical maritime transport routes. The canal connects
the Red Sea and the Mediterranean, providing a direct route from Asia to
Europe. This route avoids the dangerous passage of the Cape of Good
Hope and reduces travel by 5,500 nautical miles and multiple days [2].
Approximately 50 ships utilise the channel daily, handling an estimated 12%
of all global cargo ship transportation and 30% of container trade [3].

The Suez Canal Blockage occurred in March 2021, the M/V Ever Given
was navigating the channel on a day when the winds reached 40 knots (74
km/h, 46 mph), and the resulting force from these strong winds caused the
bow of the vessel to drift, ending up stuck upon the southern canal bank.
The disruption caused major trade losses of approximately USD $54 billion
and a further $31 billion due to the resulting compensation necessary for
victims [4]. It is estimated that Egypt alone had losses of $14 million each
day the canal was closed.

Affected ships were required to deviate to the alternative route past the
Cape of Good Hope, resulting in additional fuel costs and two to three extra
weeks of travel. Those vessels which could not deviate to the alternative
route were left waiting in the canal, resulting in a congestion of 370 vessels
[4]. Once the Ever Given was freed, traffic could resume, and 450 ships
passed through the canal successfully. However, a further 400 ships were
still waiting in other areas. The backlog of ships was only cleared 11
days after the blockage began and 5 days after the blockage had been
successfully removed.

The impact on global trade while the Ever Given was grounded was massive.
However, there are still residual effects today, as it demonstrated how vul-

1 Introduction

nerable maritime transportation is to a single disruption, forcing industries
and companies to create solutions for all potential disruptions regardless of
their likelihood of occurrence.

1.1.2 Aiding Recreational Sailors

Navigating narrow passages, harbours, and unfamiliar ports can be challen-
ging for any sailor, regardless of skill, especially for recreational sailors or
those sailing alone. These environments require precise movements and
constant awareness, and the complexities involved with real-time decision-
making, navigational chart comprehension, and appropriate responses
result in human errors due to fatigue, lack of knowledge, or stress. For
many sailors, integrating an autonomous system would alleviate some of
the pressure caused in these scenarios and help with the demands of
passage planning.

The combination of enhanced situational awareness, a guided decision-
making process and improved safety would provide those sailing recreation-
ally with an added peace of mind, enabling more people to participate in
sailing and improve overall enjoyment for those involved. The system could
also aid sailors by acting as a warning system to alert them to any incoming
collisions or by managing the typical tasks undergone during navigation,
contributing to the overall fatigue, greatly improving the vessel’s safety.

This system could make recreational sailing much more accessible, allowing
a wider demographic of people to get involved who otherwise would be
unable to participate. Additionally, the system would enable newer sailors
to learn in a safer environment and understand complex navigational skills
by observing the system’s decisions. Ultimately, integrating an autonomous
system would improve the safety and enjoyment of recreational sailing
while also increasing overall participation.

1.2 Success Criteria and Objectives

To evaluate the performance of the Neptune system, a set of pre-defined
success criteria and outcomes will be used to guide the development and
aid in the decision-making process. These will be used to evaluate the
project, aiming to keep the development clear and straightforward. These
objectives will be tested and evaluated in a simulated environment, allowing
maximum experimentation and a streamlined development process.

1 Introduction

The most basic success outcome is a system that can navigate any channel
without collisions. Ensuring no collisions is the minimum goal for this project
as this prioritises safety, which is of utmost importance as any collision
within a channel could have a massive local impact, resulting in the closure
of that channel and may require a potentially monumental response effort
to rectify this collision. A collision may also have a global consequence,
devastating social and economic impacts. For these reasons, any system
unable to navigate a channel without causing such collisions will be a
failure.

Once the system can successfully navigate a channel without causing a
collision, the next success criterion is to ensure the navigation is com-
pletely efficiently and effectively, as any disruptions due to slow moving or
stationary vessels could affect other vessels within the channel, causing
congestion and resulting in both global and local economic impacts depend-
ing on the channels importance in the international trade routes. To meet
this objective, the system must be able to navigate in real-time, respond to
the dynamic environment and safely avoid all collisions. This project aims
to improve the system’s overall performance over multiple generations and
provide an effective navigation system.

The next success criterion, improving the overall system performance,
would be ensuring the system can successfully navigate various channels
with distinct features. The system would be generalised to varied channels
and navigational features such as turns, outcrops and bends. Ultimately,
effectively navigating any channel it is presented with and any further
training using genetic algorithms would result in greater performance and
specialisation for the trained channel.

Once a generalised system is developed, the next success criterion for
testing performance would be evaluating it under various weather condi-
tions. The conditions would have increasing difficulty further assessing
the performance in many different scenarios, the initial scenarios would
consist of a gentle wind and current speeds with favourable directions.
The conditions would gradually deteriorate, resulting in more complicated
scenarios with extreme wind and challenging sea states, such as extreme
currents or large waves.

The final success criteria to evaluate the system’s performance would be
testing the system in a real-world scenario, providing excellent data about
the performance. This would allow for accurate evaluation and comparison
against other real navigation systems. As any collisions occurring in these
scenarios have tangible effects, these tests would be run in a carefully
controlled environment to eliminate damage caused by errors. While this
does not completely mimic real-world scenarios, it would provide insights
into how the system could perform if placed in a nautical environment.

2 Background and Literature
Review

The primary focus of this background and literature review is to analyse
historical navigational systems, how these systems have developed with
new technology, current autonomous navigation systems and their imple-
mentations, and research into similar systems applying to this project.

2.1 Background Information

2.1.1 Navigational Systems
Historical Navigation

The earliest nautical navigation solely relied on landmarks, following coast-
lines and maintaining a constant line of sight with land, which provided
sailors with the first forms of nautical transportation. The use of landmarks
developed into following current and wind patterns alongside bird migrations
to help guide sailors [5]. Polynesian sailors could use the direction and
types of waves to collect information about their position at sea. They also
tracked weather patterns, allowing for effective open-ocean navigation. By
around 400 AD, they had travelled from the Marquesas Islands to Hawaii, a
distance of 2,300 miles [5][6].

As navigation progressed, sailors began using celestial objects to guide
them; the sun’s position as it travelled from east to west was used to guide
their route, and sailors could use the shadows cast at noon to determine
the directions of north and south [6]. When the stars rose, sailors watched
their movements, measuring their height in the sky and determining their
progress. As the knowledge of the night sky increased, constellations were
used. Sailors could use the position of each constellation to determine
the direction they were heading [5]. As time progressed, sailors used
meteorological and astronomical means to navigate the seas; those most
knowledgeable could distinguish cold north winds from the warm south

2 Background and Literature Review

winds. Therefore, names were given to the eight principal winds, culminat-
ing in the wind rose [7]. Upon discovering a lodestone’s magnetism, the
magnetic compass confirmed the wind direction when otherwise obscured.
The combination of the wind rose card with a magnetic needle allowed a
navigator to read the bearing from the card to determine their heading, this
developed into the compass, initially having basic headings corresponding
to the winds and gradually increasing in number until it arrived at the 32
points in holds today [6].

Pilot books were created to aid in coastal navigation, detailing the headings
to be steered, landmarks, currents and port entrances. Together, this
information allowed sailors safe passage between ports. These coastal
pilot books gradually accumulated and evolved into the Portolan charts
[8]. These charts were used by Mediterranean sailors during the Middle
Ages, allowing for the successful navigation of the whole Mediterranean
Sea [6]. Portuguese navigators attempted to expand these charts and
navigate along the west coast of Africa; however, this was not possible
as these charts did not relate to the new methods of dead reckoning they
had devised. These methods required charts which utilised latitude and
longitude. As methods to accurately determine latitude using quadrants and
astrolabes became more common [5] [9], the issue of calculating longitude
became ever more apparent. The problem of longitude calculation at sea
lasted for centuries, as it relied upon an accurate clock. The clock could
be used to calculate the difference between absolute time and local time,
thus calculating the longitude as one minute corresponds to four degrees,
upon the creation of John Harrison’s H4 watch [10] accurate timekeeping
was now possible, as the watch only lost five seconds during a two-month
duration at sea [9], both your latitude and longitude could be calculated
allowing sailors to locate their position accurately at sea. The ability to
accurately plot your position allowed for the creation of accurate sea charts
and safe navigation for mariners.

Modern Navigation

At the end of the 19th century, nautical navigation involved the use of ac-
curate sea charts and pilot books to plan passages across the sea and
the use of instruments such as the sextant and chronometer backed up
by the use of dead reckoning [11] allowed for an accurate depiction of the
ship’s position. This created a strong foundation upon which the techno-
logical developments of the 20th century would build. The introduction of
radio transmitters, radar, and gyroscopic compasses [12] gave navigation a
massive leap for position calculation and safety, as the detection of nearby
vessels or landmasses was possible with radar [13]. Another technological
revolution came in the form of the Global Positioning System (GPS); the

2 Background and Literature Review

use of satellites allowed for the precise positioning of vessels. This system
grew to include access to all major satellite constellations, allowing accurate
determination of positions up to one metre, called the Global Navigation
Satellite System (GNSS) [14]. The paper charts used in the past were
adapted into vector data sets as Electronic Navigational Charts (ENC) [15].
The combination of GNSS and ENCs provides a fully electronic navigation
system (Electronic Chart Display and Information Systems, ECDIS), allow-
ing sailors to view their location on an accurate chart. The invention of the
Automatic ldentification System (AlS) allowed for the automatic transfer
of ship data between vessels. Information such as the vessel name, IMO
number, position, course, and speed is all transmitted between vessels;
this information appears on the ship’s ECDIS, helping navigators avoid
collisions by highlighting hazards.

As technology progressed, the combination of ECDIS, AIS, ARPA and
various sensors [16] enabled navigators to make accurate decisions even
in poor conditions. A myriad of tools can assist an expert navigator in all
situations, only requiring a small amount of intervention from the sailor.
Ships also have the possibility of following planned routes using autopilot
systems however, these systems do not replace the need for an expert
human navigator but only assist in controlling the ship. These systems have
evolved from basic course-holding computers to adaptive systems which
can reduce fuel consumption, rudder movement and journey times [17].
Despite all this technology, pilots are still used in ports and narrow passages.
A nautical pilot is a sailor with expert knowledge about a specific area or
channel [18]. Navigating a port is the most difficult part of a journey due to
every channel’s varied nature, the constant traffic flow and the requirement
to dock safely. This is why vessels rely on a pilot to navigate safely. Canals
such as the Suez Canal require a pilot for each ship to reduce the chance of
collisions occurring, as without the knowledge each pilot possesses, major
disruptions would occur regularly, as the usual navigators would struggle to
navigate the channel safely.

Sensors are required to collect the massive amounts of data needed for
navigation. Most boats are equipped with radar, magnetic compasses, a
speed and distance log device, an echo sounder, an anemometer, and an
ECDIS, embedded with AlIS and GNSS [16]. All these sensors result in a
large amount of data being collected. To successfully navigate a channel,
the vessel gathers information on the channel chart, the boat’s distances
between all sides of the channel, the wind speed and direction, the channel
current speed and direction and the locations of any vessels that could
collide. The anemometer, log, depth sensor, and ECDIS collect the data to
determine the distance to the sides of the channel. An accurate position fix
within the channel would allow the ECDIS to calculate the distance using
chart data.

2 Background and Literature Review

Autonomous Navigation

Recently, we have seen advancements in autonomous navigation for boats
through machine learning and deep learning models. These techniques
provide boats with automated systems and reduce the need for human in-
volvement. The International Maritime Organisation use Maritime Autonom-
ous Surface Ships (MASS) to describe vessels that operate with little to no
human interaction and perform all necessary tasks. There are four levels of
autonomy, from basic automated processes with a crew on board ready to
take over at all times to a fully autonomous vessel capable of making its
own decisions [19]. The introduction of MASS would reduce operational
costs, eliminating the need for crew wages and accommodation, improve
safety as errors made due to human error would no longer occur, and im-
prove overall efficiency by reducing fuel consumption and optimising routes.
The four main categories of electronic systems required for autonomous
navigation are sensing, communication, decision-making, and actuation.

Sensing requires the sensors on board, such as radar, lidar, GNSS and
cameras, to view the environment to provide information about the boat’s
speed, position, direction, and other vessels and objects nearby [20]. Com-
munication systems are used to transmit data between ships and shore
stations. This is essential for navigation as it provides data which can be
used to avoid collisions. The decision-making systems process the data
from the sensors using computer vision, and together with data communic-
ated from other boats, artificial intelligence responds to the environment
to navigate through it. The actuation systems execute the commands by
physically controlling the navigational instruments to adjust speed, course,
and ballast [21].

The NeuBoat technology from Avikus currently provides navigational as-
sistance to captains aiming to reduce collisions during navigation and
docking through cameras and sensors gathering information and relaying
this through augmented reality [22]. Avikus has an additional product, an
Al-controlled route-planning system, navigation and collision avoidance
requiring human intervention. An advanced system adds an Al-controlled
docking system providing safe entry to a dock, one of the most difficult
parts of a passage. Uncrewed Surface Vessels (USV) from Maritime Ro-
botics have a variety of uses, including data collection, surveying, remote-
controlled operations and endurance passages. These USVs have multiple
applications, but the underlying structure remains the same, demonstrating
that once a framework has been developed and implemented. The core sys-
tems of the USVs include a vehicle control system or remote control centre
where the vehicle is controlled and monitored remotely, providing detailed
information for safe navigation; the onboard controller which manages all
operations ensuring they occur accurately and precisely; and information

2 Background and Literature Review

collection this is provided by a 360-degree view of the vehicle surroundings
and analysis of this in real-time allows for assessment of hazards and other
objects [23].

2.1.2 Neural Networks Evolved with Genetic Algorithms

The current systems use a variety of artificial neural network (ANN) architec-
tures including convolutional neural networks (CNN) for image classification
and computer vision, recurrent neural networks (RNN) as time-series data
processing is necessary and specifically long short-term memory (LSTM)
networks are used as predicting future states from previous observations
is essential for continuous navigation, and deep reinforcement algorithms
are used as through continuous interaction the quality and performance of
the algorithm greatly improves [24] [25]. The machine learning algorithm
being used includes regression algorithms for localisation and actuation
specifically Bayesian regression and decision forest regression models,
pattern recognition (DRL) algorithms are used alongside CNN for object de-
tection and filtering sensor output, and decision matrix algorithms are used
when making decisions as it analyses the relationships between values
and information to select the correct response [26] [27] [28].

The challenges involved with autonomous navigation include ensuring
that all algorithms can operate within real-time constraints and that the
algorithms are generalised to provide good performance across a variety
of different environments, as safety is ultimately the most important issue,
ensuring that the algorithms are robust enough to prevent failures in both
time and safety-critical situations. Genetic algorithms could provide a cost-
effective solution for autonomous navigation, as they would reduce the
number of expensive sensors required. To overcome these challenges. An
approach utilising evolutionary algorithms (EA) could solve these issues.
Combining the numerous algorithms currently used with genetic algorithms,
optimising parameters and building on previous iterations, reducing error
and becoming more robust and effective. When utilising evolutionary al-
gorithms each neural network is an individual of the total population for that
generation containing different parameters, after each population of solu-
tions, the performance is quantified using a fitness algorithm to measure
the success of each solution then those deemed to be the most successful
create new solutions with a combination of parameters [29].

An environment is required to train these algorithms, and simulating it
virtually allows for easy modification. The simulation would provide real-
world scenarios, allowing the algorithm to develop in a real-world context.
By altering the environment we can simulate multiple specific scenarios
with a variety of factors improving the robustness of the algorithm and the

2 Background and Literature Review

quality of navigation, as safety is the main priority, ensuring the algorithm
correctly follows the International Regulations for Preventing Collisions at
Sea (COLREG:S) in all scenarios would provide confidence in the algorithm.

2.2 Literature Review

This paper, titled An Autonomous Path Planning Model for Unmanned
Ships Based on Deep Reinforcement Learning, tries to solve the challenge
of autonomous path planning in marine environments, reflecting on the
difficulty due to the dynamic and complex nature of the sea. The current
method involves prior knowledge and lots of computational resources,
which is unsuitable for real-time decision-making. The authors propose a
deep reinforcement learning (DRL) model using the deterministic policy
gradient (DDPG) algorithm. Alongside the DDPG, the authors used an
artificial potential field (APF) to improve decision-making accuracy. They
integrated navigational rules (COLREGS), which ensured safety, training
this in a simulated environment using real-world AlS data for validation and
testing, ultimately producing a system that effectively avoids obstacles and
other vessels in numerous scenarios. Using real-world AlS data would
provide an effective blueprint for training and testing the neural networks
[25].

This paper, titled Online modeling and prediction of maritime autonomous
surface ship maneuvering motion under ocean waves, addresses the chal-
lenge of predicting the movement of Maritime Autonomous Surface Ships
(MASS) in real time. Currently, models struggle to adapt to the dynamic
conditions of the sea in real time, resulting in poor performance. The pro-
posed solution relied upon a modelling method based on the Least Squares
Support Vector Machine (LS-SVM); this helped enhance adaptability and
accuracy by using a black box model that could constantly relate all the
input variables collected. They also utilised a sliding window technique to
select the most relevant data and combined it with error-based updates;
this handled long-term predictions in various environments. Although this
study looks at environments with ocean waves and not narrow channels,
the algorithms used provide evidence for using adaptive components within
my project [24].

This paper, titled Nonlinear Model Predictive Control for Enhanced Nav-
igation of Autonomous Surface Vessels, specifically focuses on collision
avoidance, anti-grounding, and environmental adaptability. These authors
utilised a non-linear model predictive control (NMPC) combined with Arti-
ficial Potential Fields (APFs) and a nonlinear disturbance observer. Elec-
tronic Navigational Charts (ENCs) were incorporated to define grounding

2 Background and Literature Review

hazards, combined with APFs guiding the vessel to ensure safe navigation.
This paper used a distance observer, which improved NMPC performance
to compensate for environmental factors. This project directly compares
with mine as it involves all the same aspects and provides insight into
useful, robust frameworks and validation methodologies [30].

This paper, titled Nonlinear Model Predictive Control with Obstacle Avoid-
ance Constraints for Autonomous Navigation in a Canal Environment, ad-
dresses the problem of autonomous navigation for small boats in canal
environments, which directly relates to this project. This paper again uses
non-linear model predictive control (NMPC) combined with LiDAR-based
obstacle detection and then validates the experimental data in the Pohang
Canal. Using a single NMPC layer reduced the computational resources
and improved real-world adaptability. This paper directly relates to my pro-
ject as both consider navigation in constrained environments. The reliance
on LiDAR has limitations in harsher weather conditions, which are more
prevalent at sea [31].

The paper, titled Towards A COLREGs Compliant Autonomous Surface
Vessel in a Constrained Channel, addresses the challenge of autonomous
navigation for surface vessels while complying with the International Regula-
tions for Preventing Collisions at Sea (COLREGS) in constrained waterways.
The proposed solution uses a system of sensors and a Kalman Filter for
object tracking combined with a Visibility Graph-Inspired Path Planning
(VGIPP) algorithm to avoid collisions by dynamically adjusting waypoints.
The algorithm was validated on the Charles River, demonstrating effective-
ness in real-world scenarios. This paper is highly relevant to my project
as object avoidance and navigation in constrained environments directly
parallel this project. However, the algorithm is focused on predetermined
paths, which limits its adaptability [32].

This paper, titled Neural Network-based Genetic Algorithm for Autonomous
Boat Pathfinding, focuses on a pathfinding method for autonomous boats
navigating through different environments. The solution uses a hybrid
approach using neural networks optimised by genetic algorithms. The
neural networks are trained on sensors detecting distances and altering the
boat’s acceleration and heading to control the boat’s movement. Genetic
algorithms are then used to improve the performance of the algorithm,
solutions are tested in virtual environments to allow for varied test conditions.
This paper relates to mine, as both use neural networks evolved with genetic
algorithms, although the limited scenarios used in the reliability in dynamic
environments are untested [33].

This paper, titled NeuroTrajectory: A Neuroevolutionary Approach to Local
State Trajectory Learning for Autonomous Vehicles, focuses on the tra-
jectory planning of autonomous vehicles by focusing on the limitations of

10

2 Background and Literature Review

current approaches. The solution proposed uses genetic algorithms to train
deep neural networks, these networks combine CNNs and an LSTM for pre-
dictions. This paper uses a Pareto front to balance and optimise the three
main objectives. The neuroevolutionary training evolves the network, optim-
ising multiple objectives simultaneously. Using LSTM branches stabilises
predictions, and the integration of real-world training improved robustness
and reliability. Although this project parallels my own, its focus is on land
vehicles and not nautical vessels, which could result in the methodologies
used not being as effective [34].

This paper, titled Neuroevolutionary Multi-objective approaches to Traject-
ory Prediction in Autonomous Vehicles, tackles the challenge of optimising
trajectory prediction in autonomous vehicles using deep neural networks
(DNNs). The authors propose combining neuroevolution with Evolutionary
Multi-Objective Optimisation (EMQO). This paper again combines CNNs and
LSTM for predictions; however, a non-dominated Sorting Genetic Algorithm-
[l (NSGA-II) optimises the hyperparameters, training and validating using
GridSim. The NSGA-II effectively identifies the optimal solutions to balance
all objectives. The paper is similar as it uses genetic algorithms and a sim-
ulated environment; however, as the focus is on land vehicles, the results
demonstrated may not cross over to nautical vessels [35].

This paper, titled TinyLidarNet: 2D Lidar-based End-to-End Deep Learning
Model for F1TENTH Autonomous Racing, utilises end-to-end deep learn-
ing to convert raw LiDAR data into movement commands. This solution
employs a 1D convolution neural network to process data in real time for
autonomous navigation around a track; they found that a CNN performs
better at high speeds and generalises better than other MLP-based models
[36].

The papers that are the most relevant directly integrate neural networks
with genetic algorithms and focus on optimisation techniques applicable to
vessel navigation[33] [34] [35]. Using Pareto front approaches balances out
all objectives to ensure efficiency across all areas. Those papers focusing
on collision avoidance and path planning by utilising COLREGs ensure that
safety is at the forefront of the project [25] [30] [32]. COLREGs enhance
the real-world applicability of these systems and the methodologies util-
ised. Meanwhile, papers using NMPC provide an approach for real-time
obstacle avoidance and anti-grounding, complementing the project’s aim
on adaptability [30] [31]. Those models trained in virtual environments
but utilise real-world data gathered by AlS and ENCs provide an excellent
blueprint for training, validation and testing this project [25] [30]. Models
using CNNs and LSTM networks are highly relevant to my implementation
as they provide similar architecture methods for this project [34] [35] [36].

In my research, | discovered a gap in the current state-of-the-art sys-

11

2 Background and Literature Review

tems. While extensive research on autonomous navigation using various
deep learning techniques has been conducted, few studies utilise neural
networks evolved by genetic algorithms, specifically focusing on nautical
navigation for constrained channels. Although there is research using a
neuroevolutionary approach, these papers focus on land-based vehicles
and are not tested in realistic nautical environments to evaluate the perform-
ance of a vessel in a narrow channel. There is a paper investigating neural
networks evolved by genetic algorithms; however, this paper evaluates
performance in simple environments, lacking dynamic environments and
complex sensors.

My project directly addresses this gap in research as it explores various
areas. This project focuses on channel navigation for nautical vessels,
adapting similar neuroevolutionary methods into real-time nautical navig-
ation, where the dynamic environment and challenging manoeuvrability
greatly impact the navigation. While the use of CNNs evolved by genetic
algorithms has shown great success in other papers, the performance
of these networks is largely untested in nautical environments, and this
project would help further research in this area and provide data to eval-
uate the architecture. Genetic algorithms provide a powerful optimisation
technique and supply advantages for real-time performance by enabling
the model to learn through practice and exploration, a common problem
encountered when utilising deep reinforcement or supervised learning. This
project explores a navigation system without needing massive amounts
of pre-defined training data while remaining computationally inexpensive,
providing research into small-scale systems while still providing excellent
navigational performance.

12

2 Background and Literature Review

Paper Title

Methodology Similarities

Methodology Differences

An Autonomous Path Plan-
ning Model for Unmanned
Ships Based on Deep Rein-
forcement Learning [25]

Online modeling and predic-
tion of maritime autonom-
ous surface ship maneuv-
ering motion under ocean
waves [24]

Nonlinear Model Predictive
Control for Enhanced Navig-
ation of Autonomous Surface
Vessels [30]

Nonlinear Model Predict-
ive Control with Obstacle
Avoidance Constraints for
Autonomous Navigation in a
Canal Environment [31]
Towards A COLREGs Com-
pliant Autonomous Surface
Vessel in a Constrained
Channel [32]

Neural Network-based Ge-
netic Algorithm for Autonom-
ous Boat Pathfinding [33]
NeuroTrajectory: A Neur-
oevolutionary Approach to
Local State Trajectory Learn-
ing for Autonomous Vehicles
[34]

Neuroevolutionary Multi-
objective approaches to
Trajectory Prediction in
Autonomous Vehicles [35]

TinyLidarNeyt: A 2D Lidar-
based end-to-end deep
learning model |36)]

Trains in a simulated environ-
ment

Real-time data analysis and
environment adaptability

Focuses on collision avoid-
ance and various environ-
mental factors

Focuses on boats in chan-
nel environments whilst us-
ing LiDAR data

Focuses on the navigational
challenges of constrained
channels

Uses neural networks
evolved by genetic al-
gorithms

Trains CNN with an LSTM
network, then evolves them
using genetic algorithms

Utilises CNN and LSTM al-
gorithms with genetic al-
gorithms to evolve neural net-
works trained in simulated
environments

Utilises CNN to analyse
LiDAR data in real time and
pretrains the network on col-
lected data

Uses DRL with a DDPG
algorithm and utilises real-
world AIS data, an APF is
used to enhance decision-
making

Uses an LS-SVM algorithm
in open ocean environments
rather than an LSTM CNN

Trained using an NMPC with
APFs on data gathered from
ENCs instead of an LSTM
CNN

Trained using an NMPC al-
gorithm then validated in
a real-world environment
rather than an LSTM CNN

Uses VGIPP algorithms in-
stead of an LSTM CNN to dy-
namically adjust waypoints

Simulated in a 2D basic en-
vironment

Focuses on land vehicles in-
stead of nautical vessels

Focuses on land vehicles

Doesn’t use genetic al-
gorithms to improve per-
formance and is trained in
real-world environments
instead of simulated ones

Table 2.1: A table comparing methodologies against my final implementa-

tion

13

3 Methodology and
Implementation

Navigating narrow channels such as ports, harbours, and passages provides
higher navigational difficulty and complexity than open water environments
for human and automated pilots. The additional challenges created due
to a reduction in manoeuvrable space, an increased number of obstacles,
and varying current strengths and directions ensure that this is the most
complex part of the passage for any vessel, especially for RAM (restric-
ted in their ability to manoeuvre) vessels such as container ships. These
challenges meant it was essential to implement a methodology capable of
adapting and responding to various environments in real time.

This led to an implementation that collected LiDAR data from the environ-
ment for analysis and produced linear and angular velocities as outputs,
controlling the robot’s movements. A neural network was utilised as it can
learn from environmental data with no explicit programming, allowing it to
easily adapt to various scenarios, providing a generalised system, which is
essential for navigation, as no two environments are the same. A genetic
algorithm was selected to evolve and improve the neural network’s per-
formance as it allowed for generalised improvements in decision-making
that would improve performance across multiple environments, whilst also
optimising the network without requiring a predefined set of rules and
parameters. Genetic algorithms utilise reinforcement learning to improve
performance based on a custom fitness function, allowing for dynamic
improvements.

The Neptune autonomous system aimed to navigate from the start to the
end of a channel whilst avoiding all obstacles and ensuring no collisions
occurred. The system was trained and evaluated in a Gazebo simulation
environment, providing simulations with real-world physics, allowing for
accurate simulations [37]. The robot is controlled by various ROS (Ro-
bot Operating System) topics, which collect the necessary data from the
environment and provide the required output data to control the robot’s
movements [38].

14

3 Methodology and Implementation

3.1 Neptune’s Simulation Environment and
Robot Controller

Different 3D environments were designed and created in Gazebo to sim-
ulate and train the system. The environments began with basic channels
with few turns and gradually became more complex, adding obstacles, tight
turns and varying weather conditions, including wind and current direction
and strength. As Gazebo mimics real-world physics, this allowed for a
progressive training model, providing a gradual learning curve in a life-like
environment. The simulation was set up using a launch file, which defines
the world environment, the robot model, and the required files. Throughout
the channel, artificial waypoints are placed to help track the robot’s progress

through the channel [A.1] [A.2] [A.3]

The robot chosen to navigate these simulations was a TurtleBot3 Waffle Pi
robot, as it can simulate both linear and angular motion, reflecting a vessel’s
movements through water. Equipped with a camera, LiDAR, and Odometry
sensors, these sensors form the input data for the neural network utilised.
The robot used a controller to interact with the simulated environment
via ROS2 functions, which provided the necessary callbacks, simulation
adjustments, and movement commands to perform the required navigation.
The controller also uses the sensors to collect data used for performance
evaluation

3.2 Neptune’s Neural Network

3.2.1 Deep Deterministic Policy Gradient Network

The initial neural network implemented a deep deterministic policy gradient
(DDPG) agent, a deep reinforcement learning (DRL). The neural network
input was LiDAR sensor data, which provided linear and angular velocity
outputs. The DDPG agent contained three sections: an Actor, a Critic [A.6]
and a replay buffer [A.8]

The actor agent utilised the 360-degree LiDAR data as an input and
provided 2 outputs, which the robot used as linear and angular velocit-
ies to control its movement. The network contained 3 linear layers, followed
by a normalisation layer and a ReLU activation layer. The normalisation
layer stabilises training and reduces covariance shifts, and the RelLU ac-
tivation layer adds non-linearity. A Tanh activation function ensures the
values are between -1 and 1, mapping to the boat’s maximum velocities

15

3 Methodology and Implementation

and steering.

The critic network evaluated the quality of the linear and angular velocities
determined by the given input data, also known as the state-action pairs.
The critic produced a single output which scored the actor’s performance.
The critic network contained 4 layers, each followed by a normalisation
and RelLU layer, which provided stability and non-linearity. The final output
provides a score for both linear and angular motion separately.

A replay buffer stores data about previous decisions made by the actor
and the critic. Enabling the agents to learn from past decisions, improving
sample efficiency and reducing training instability from correlated data.
The DDPG agent updates the actor and critic networks using a gradient
descent method, handles the replay buffer to stabilise learning, and applies
soft updates and stabilise learning by preventing rapid changes in targets,
further improving performance [A.5]

Despite numerous simulations and constant hyperparameter changes to
the network and genetic algorithm, the model’s performance was poor. This
led to the decision to start again and revert to a more basic network, which
instantly resulted in greater performance and suggested the initial network
implementation was overcomplicated and sophisticated.

3.2.2 Feed-Forward Neural Network

The next implementation of this neural network was a fundamental design
to maximise computational speed and reduce complexity [A.9 The network
took LiDAR data as input and produced two outputs corresponding to the
linear and angular velocities of the robot. The network consists of three
linear layers: the first is followed by a ReLU activation, the second by layer
normalisation and another ReLU to aid stability and convergence, and the
final layer outputs two values, which are passed through a Tanh function
to constrain them between -1 and 1. 3 layers were selected as a balance
between speed, efficiency and accuracy. When 4 layers were utilised, the
robot moved too slowly and took too long to analyse the LiDAR data, and
when 1 and 2 layers were utilised, the robot’s performance significantly
decreased

3.2.3 Convolutional Neural Network

Whilst the performance of this neural network architecture was favourable,
it could not generalise to different environments, resulting in collisions at

16

3 Methodology and Implementation

similar locations throughout the channel. This led to another change in
neural network implementation; the architecture chosen for this implement-
ation was a one-dimensional convolutional neural network, as the network
was now analysing captures of LiDAR data. The network consisted of five
convolutional 1D layers; the first layer began with one input channel and
16 output channels; the second layer had 16 input channels and 32 output
channels; the third layer had 32 input and 64 output channels; the fourth
layer consisted of 64 input and 128 output channels; and the final layer had
128 input and 128 output channels. Each convolutional layer was followed
by a batch normalisation layer to stabilise training and a leaky ReLU activa-
tion function to allow for negative values and provide non-linearity to the
model. Leaky ReLU was chosen over regular ReLU as negative values are
required for linear and angular movement

A set of three fully connected linear layers followed the convolutional layers;
the first layer had 32 output features, the second layer had 32 input and 16
output features, and the final layer had 16 input features and two output
features corresponding to the linear and angular velocities of the robot.
The first two linear layers were followed by a dropout layer to help with
regularisation and a leaky ReLU activation function; the final layer was
followed by a Tanh function, ensuring that values were bound between -1
and 1. The value chosen for the dropout layer was 0.2, as this provided a
good balance between performance and generalisation, as a smaller value
of 0.1 was found to not generalise well enough, but a larger value of 0.4
reduced performance significantly

Class NeuralNetwork:
Method: Initialise:
- Define CNN layers
- Define Fully Connected layers

Method: Forward:
- Process input through network layers

- Return Output

Method: To:
- Move neural network to the specified device (CPU or GPU)

Figure 3.1: Convolutional Neural Network Pseudocode

3.3 Neptune’s Genetic Algorithm

The genetic algorithm is used to improve the neural network’s perform-
ance over multiple generations by selecting the best individuals in each
population and using them as parents to create the next generation

17

3 Methodology and Implementation

The initial population is created with random weights. Once the whole
population has been simulated, the top 10% of the population is selected
to become the elites of their generation. These elites become individuals
in the next generation, allowing for further progression. This preserved
the highest-performing individuals whilst allowing for diversity within the
next generation. For each child, tournament selection is used to select 2
individuals from the top 25% of the population, and these two individuals
become the parents for that child [A.12]

Once the parents had been selected, a crossover function was utilised to
distribute the parents’ attributes to the child using a randomised weighted
sum between 0.3 and 0.7, This provided a random blend between both par-
ents, which supplies greater diversity within the new generation. Each child
then underwent mutation to randomly modify weights, preventing premature
convergence and improving diversity with each generation. The mutation
strength begins at 0.049 and slowly decreases with every generation to en-
sure the later generations can still explore the environment, but converges
to a maximum performance [A.13] Each child is then further modified to
become more like the top-performing individual of the population. Once all
the children have been created and altered accordingly, the simulations are
run on this new population.

Class GeneticAlgorithm:
Method: Initialise
- Set parameters for population size, mutation rate, crossover rate, and other configurations
- Set state and action dimensions
- Set device for computations

Method: Create Population
- Input: population size, state dimension, action dimension, device
- Output: population (list of neural networks, each representing an individual)
- For each individual in the population:
- Initialise a neural network (DDPGAgent)
- Add the neural network to the population

Method: Select Parents
- Input: population, fitness scores, number of parents, tournament size
- Output: parents (list of selected individuals)
- For each parent:
- Randomly select a few individuals from the population using tournament selection
- Select the candidate with the highest fitness score as the parent
- Return the selected parents

Method: Crossover
- Input: parents (list of selected parents)
- Output: child (new individual created from parents)
- Perform a weighted average of the parameters (actor and critic networks) from two parents
- Return the child

Method: Mutate
- Input: child (new individual)
- Output: mutated child (child after mutation)
- For each parameter in the child’s actor and critic networks
- With a certain probability (mutation rate):
- Apply small random noise to the parameter (mutation strength decreases with generation)
- Return the mutated child

Method: Create Next Generation
- Input: population, fitness scores, current generation
- Output: next generation (new set of individuals)
- Sort the population based on fitness scores and select elites
- Keep top-performing individuals (elites) unchanged
- For the rest of the population:
- Select parents using the selection method
- Create a child using crossover
- Mutate the child
- Add the child to the next generation
- Return the next generation (including elites and new individuals)

Figure 3.2: Genetic Algorithm Pseudocode

18

3 Methodology and Implementation

3.4 Training the Neptune system

The initial implementation method chosen started simulations with an un-
trained model and provided complete freedom for the neural network and
genetic algorithm to control the training and improve the network perform-
ance based on the fitness score. However, pre-training the network on
LiDAR data before running the simulations greatly improved overall per-
formance while reducing computation cost.

The final implementation of this neural network had two separate stages to
the training process. The first stage [3.3]involved manually navigating the
channel using a teleoperation node and saving the captured LiDAR data
from the robot and the corresponding linear and angular velocities outputted
by the robot for each capture. This allowed the network to be trained on
each capture and to predict velocities. The dataset used to train the model
consisted of 9330 LiDAR captures of different environments containing
long straights, tight turns, S bends, and various other features common in
channels. The training utilised AdamW as the optimiser, providing a more
generalised model compared to Adam, with a learning rate of 0.001 for 500
epochs. Huber loss was utilised, as it delivered a balance between being
robust against outliers and sensitive to small errors, which is important for
predicting angular velocities.

The second stage needed to train and develop the algorithm using a loop
to simulate all individuals of a population for every generation. The pre-
trained neural network is loaded, then each simulation is reset to the initial
position, the neural network is then initialised for the individual with some
mutation, ensuring that there are differences between the population, and
the simulation begins. During each simulation, the robot inputs the LiDAR
data into the neural network and moves according to the output received.
Simulations can end in failure or success. The simulation fails if a collision
occurs, the robot gets stuck at the same waypoint for 30 seconds, or the
time limit is reached. The simulation will be successful if the robot reaches
the final waypoint. Once a simulation has finished, the collected metrics
are used to calculate the individual’s performance. The performance of
each individual is based on various factors, including distance travelled,
waypoints reached, time taken, ratio of linear velocity to angular velocity,
and oscillation count.

The fitness scores are calculated in two different scenarios: the first being
if the robot reaches the goal, and the second being if it does not reach the
goal. If the robot reaches the goal position, a bonus is added for achieving
the goal, ensuring that these individuals are preferred when creating the
new generation. Minimising the distance travelled and time taken by the
robot implies greater navigational efficiency and better performance. To

19

3 Methodology and Implementation

Class LidarDataset:
Method: Initialise:
- Define data file

Method: len:
Return the length of the dataset

Method: getitem:
- Get lidar data and velocities for each row
- Convert lidar and velocities to correct tensor values
Return lidar and velocities
Function Training Function:
- Initialise the dataset

- Create Dataloader with the dataset

- Set device
- Initialise model (NeuralNetwork)

- Define loss function (Huber Loss)
- Initialise optimiser (AdamW with learning rate)

- For each epoch:
- Initialise loss tracking variables

- For each batch in Dataloader:
- Move lidar and velocities to device

- Zero gradients in the optimiser
- Pass images through the model to get outputs

- Compute the loss using outputs and labels
- Backpropagate loss

- Update model parameters with optimiser

- Calculate percentage difference between target and predicted velocities
- Accumulate running loss and percentage differences

- Compute the average loss and veloctity percentage differences for the epoch
- Print loss and percentage differences for linear and angular velocities

- Save the model’s state dictionary

Figure 3.3: Neural Network Training Pseudocode

reduce unnecessary movements, an individual is penalised if it oscillates
forward and backwards, further rewarding smooth, continuous motion [A.16

If the individual does not reach the goal, the fithess score maximises the
distance travelled, time taken, and movement efficiency. Any oscillations
are penalised to encourage smooth, continuous motion. If a collision occurs,
the individual is heavily penalised to ensure that these individuals are not
selected when creating the next generation. The fitness score is then
multiplied by the number of waypoints reached, greatly prioritising channel
progression and reaching further waypoints. Once the fitness scores have
been calculated for the whole population, the next generation is created
based on these scores, and the process starts again.

20

4 Results and Evaluation

4.1 Neural Network Architecture Evaluation

My initial neural network architecture utilised a deep deterministic policy
gradient (DDPG) critic and agent method, which analysed and evaluated
the performance of my network based on the decisions that were made.
The aim was to improve performance as the agent and critic learned; how-
ever, the model would frequently converge at a local optimum, becoming
unable to advance past a specific point in the channel. Despite changes
to my genetic algorithm, this model could not diversify enough amongst
a population to progress in the navigation of the channel, as many of the
individuals would follow the same path with minimal deviation

600 Fitness Scores over Generations Fitness Scores over Generations
ﬂ —— Best Fitness 1400 '
| — Average Fitness | “
500 \‘ 1200 \ H
g “l A g ‘\ 1 A H
400 | 1000
9 i/ R, U B D R 1 i \
700 e o L
£ 300 b ‘v 1V e SESNEN) ISUSSINY
S ~\ N\ / S N OAA A
£ AVAY =2 600 SV ANAAYAL I

AN\ - ~
200 < p, W/

IS
S
S

—— Best Fitness

100 y / -— Average Fitness
200

40 50 0 20 80 100

20 30 40 .60
Generation Generation

Figure 4.1: A graph showing the lack of deviations in the DDPG neural
network

The model’'s performance would often plateau and become stuck in a local
optimum, which could successfully navigate the channel to a specific feature
before colliding with the channel [4.2] To combat this, simulations were
run with 100 individuals for each population, aiming for enough random
mutations to improve diversification. While a single individual would perform
much better than the rest of the population, this performance was not
passed on to further generations and was often lost when creating the next
generation.

The changes made to the neural networks’ hyperparameters and the ge-
netic algorithm code improved the performance of this model significantly
from an average fithess score of 250 to 900, and the best fitness score

21

4 Results and Evaluation

Performance of Individuals in the Final Generation
17.5 o

’gls.o-

d
=
N
n
h

Fitness Scores over Generations 12,5

3000 | [i 10.0

7.5] &

5.01

|
o 2500 o 1l i i

S i I\

Y R IR || R RGN | N5 § Wty | R A AV A
0 AN TV WW AV A/ W TV "\
1500

Waypoints Reac!

A
o

tnes:

2.5 &

Distance Travele
<
n

Fi

1000 |

s00| ! . ”Bes(Fitness. 0.01 o
/ Average Fitness) 10 20 30 40 50
& 100 Time Taken (s)

0.0

40 . 60
Generation

Figure 4.2: A graph showing the plateaus of the DDPG neural network

increased from 580 to 3300 This meant that the average individual
went from getting stuck at the first turn to progressing down the channel
and colliding with the channel walls, while the best individuals of the initial
simulations could attempt the channel’s first significant turn with varying
degrees of success. The best individuals of the later simulations could
successfully navigate the first important turn, continue to the channel’s
most difficult turn and collide with the walls. While the performance of this
model improved, the results were not satisfactory, as the model could not
navigate a simple channel, the most basic objective and the changes to my
genetic algorithm could not improve the navigational performance. This led
me to change my neural network architecture.

The next neural network architecture that was implemented utilised a simple
feed-forward design, aiming to keep the computational complexity low,
allowing for real-time navigation, an important objective for this project
The navigational performance of this model improved greatly compared to
the previous model, with the generations gradually navigating the channel
and learning the different environments in real time; this demonstrated
an effective genetic algorithm which could improve the performance as it
learned.

This model could learn the environmental patterns and retain the relevant
information throughout training, improving its navigational performance.
While the performance of this model was significantly enhanced, it could
only navigate the channel when the environment was simple, with few
obstacles [4.4] This failed to navigate more complex environments, res-
ulting in solutions stuck in local optima and unable to navigate the full
channel. While the performance displayed for the section of the channel
it could navigate was impressive, the inability to navigate more complex
environments meant this model did not achieve the most basic objective of
successfully navigating a channel

22

4 Results and Evaluation

Fitness Scores over Generations

Fitness Scores over Generations

1600/ ___ gest Fitness
1400, — Average Fitness 2500
p 1200 gzooo
;3 1000 3
& 800 g 1500
19} [- N
é 600 élOOO ,,,\/\/\/ W/\/,,,,,/
400
200 / 500 —— Best Fitness
0 - s —— Average Fitness
0 5 10 15 20 2 0 0 5 10 15 20 25
Generation Generation
Performance of Individuals in the Final Generati%b Performance of Individuals in the Final Generation
. 22 ° 24
2. } O
go16 : 2.75 20 o 22
o o £ -
= * e 2509 18 @
Bo1a) © o o o o o % ki 20§
o] 2255 016 189
f>0 0.12 ® e % 0o 0 ° o ° o © "
= 200 =14 1682
[} c . o 8 o ° L £ o 5
3 o.10 - 1753 2 12 18
c ¢ o o ° > & ©
o ° . O 10 =
+0.08! 1502 . 12
0 o £ 8 o ° o ° a s -
e 1.25 i.’f 10
0.061 > s o 6l o® .
04 06 08 1.0 12 14 16 1.00 30 40 50 60 70 80

Time Taken (s)

Time Taken (s)

Figure 4.3: Graphs showing the improved performance of a feed-forward

neural network

Performance of Individuals in the Final Generation

70

e

60
°
. . = e o
Fitness Scores over Generations Ee60 0T
3500, —— Best Fitness ° ° Q
— Average Fitness D50 9
3000 [Q
o \/ = 40
40
§ 2500 / = ‘2
ﬂ 2000 9 30 30'8
9 1500 S >
g ot LA] =
1000 020 20
o
500 10 - . 10
[| y ; : ; : -
5 I = 50 75 100 125 150 175 200

20 30
Generation

50

Time Taken (s)

Figure 4.4: A graph showing a feed-forward neural network stuck in local
optima

This stall in performance resulted in further research, aiming to find neural
network architectures used in similar projects with promising performance.
This led to my final implementation: a convolutional neural network archi-
tecture. This architecture could capture the spatial information required to
navigate the channel, resulting in performance comparable to my previous
implementation with minimal training. Despite this early performance, the
performance of the average population did not match the best perform-
ance of the population, leading to an improvement in my genetic algorithm,
aiming to retain the elites of the generation whilst also bringing each indi-
vidual closer to the elites’ performance to increase the average population’s

23

4 Results and Evaluation

fitness score.

Fitness Scores over Generations Fitness Scores over Generations
1400

f 1200 // D N i N R !
1200 ! |

1000

@
S
S

Fitness Score
Fitness Score
®
2
8

o
S
S

N
S
s}

—— Best Fitness 200 1/," —— Best Fitness
—— Average Fitness / —— Average Fitness

40 60 80 100 0 5 10 15 20 25 30 35
Generation Generation

~
o
3

Figure 4.5: A graph showing the improvement in performance for the aver-
age population

This would allow for an overall increase in performance as each individual
would experience more of the environment and learn more information.
While the neural network could learn all the required information about
the environment over time, it was very reliant on an individual progressing
much further than the rest of the population, and performance would slow
down until the performance of the average individual could catch up. While
this model completes the fundamental objective for this channel, it takes
an extremely long time. To collect this data, simulations were run on 100
generations with a population of 50 individuals. This training would take
over four days to train a single model to completion.

Distribution of Individuals Fitness Scores for the Final Generation

Fitness Scores over Generations

-— Best Fitness M
14000
AN

—— Average Fitness ﬁ ‘
|
\

14000

12000 12000

o
S
S
=)

10000
8000

P
2
8
8

Fitness Score

Fitness Score

8000
4000

2000 6000

80 100 0 20 40 60 80 100
Individual

40 60
Generation

Figure 4.6: A graph showing a full simulation with a CNN architecture and
the distribution of the final generation’s fitness scores

4.2 Benefits of Pre-training the Neural Network

Despite the CNN architecture’s performance being much greater than the
previously utilised architectures, the computational resources required to
train the network were very high, as it required many generations of large

24

4 Results and Evaluation

populations to get an individual to the end of the channel. While this may
be possible for large-scale projects with greater computational resources,
a solution was required.

The first attempt to find a solution was running simulations faster than
real time; this greatly reduced the training time as the simulations could
run over 10 times faster than real time, resulting in much quicker training
times, provided the algorithms utilised could match this pace. However,
due to the complexity of the neural network and robot controller, this speed
exceeded the computational limits required to control the robot, collect the
required metrics, and manage the simulations. Ultimately, the maximum
simulation speed that ensured the neural network and robot controller
could still compute without errors was a simulation speed twice as fast as
real time. This balances reducing the training time and allowing the robot
controller to respond effectively to the environment.

This solution reduced the training times, but the overall computation time
was too high. This led to a decision to pre-train the data on LiDAR captures
of multiple environments, allowing the network to learn environmental
features without navigating the full channel, greatly improving the network’s
performance and reducing the training time. By simply pre-training the
network with data collected from an ideal channel navigation, the initial
performance of the model was much greater than a random initialisation.
Even just training on a small amount of data for a small number of epochs
demonstrated a significant performance improvement.

Fitness Scores over Generations

@
3
S

¥

5 5 & &

Fitness Score

) —— Pre-trained: Best Fitness
200 /) Pre-trained: Average Fitness
—— Not Pre-trained: Best Fitness H
—— Pre-trained: Average Fitness » 185

N
8
8
Distance Traveled (m)
r r N
>
3
S
Distance Traveled (m)
Waypoints Reached

o N & o0 ®

10) 15 20 ‘,. R SR R 1.80
Generation Time Taken (s)

Time Taken (s)

Figure 4.7: Graphs showing the fitness Scores and metrics for the initial
generation of a pre-trained model vs a random initialisation
model

When training the data, various learning rates, optimisers and loss functions
were tested to find the optimal hyperparameters to maximise performance.
Huber loss was chosen as it is robust against outliers and sensitive to small
errors, preventing overfitting to the dataset. A learning rate of 0.001 was
selected to balance convergence speed whilst not overfitting to the training
data, as this training only needed to provide a baseline to begin training
the model using the genetic algorithm. The optimiser AdamW was chosen

25

4 Results and Evaluation

to provide better regularisation and generalisation, ensuring that the model
did not overfit to the data.

Training Loss Over Epochs

0.05
—— Loss - LR: 0.001, Optimiser: AdamW, Loss Fn: HuberLoss
Loss - LR: 0.001, Optimiser: Adam, Loss Fn: HuberLoss
0.04 —— Loss - LR: 0.001, Optimiser: AdamW, Loss Fn: MSELoss
—— Loss - LR: 0.001, Optimiser: Adam, Loss Fn: MSELoss
0.03
)
0
o
—0.02
0.01
0.00 o
0 10 20 30 40 50
Epoch

Figure 4.8: A graph showing the loss per epoch

This training resulted in a model which could navigate the channel as a
whole, removing the time required to explore the channel, reducing the
total training time and allowing the genetic algorithm to focus training on
improving the actual navigation performance rather than channel explora-
tion. This resulted in improvements across the overall population for both
the elite and the average individuals, as the algorithm could spend more
time fine-tuning performance for the whole channel and avoiding overfitting
to a smaller section of the channel.

Distribution of Individuals Fitness Scores for the Initial and Final Generation

s ¥ [s e @

Fitness Scores over Generations ¥

—— Best Fitness
| — Average Fitness

10 12 14 25 50 75

2 a 6 8 160 5
Generation Individual

Figure 4.9: A graph showing the performance of a pre-trained model over
generations

4.3 Neptune’s Final Performance

The model was tested in various environments to evaluate its performance
against complex channel features. The environments chosen consisted

26

4 Results and Evaluation

of four different channels, each with varying degrees of complexity and
diverse features, allowing for a comprehensive evaluation of the model’s
performance. The most basic channel was wide, with a small 90-degree
bend and two 180-degree bends with straight walls connecting each turn
This gave plenty of room for non-optimal movement patterns and
allowed the robot to progress and still make mistakes. This demonstrates
the efficiency and effectiveness of the systems performance as this resulted
in individuals successfully navigating the channel in an average of 144
seconds and travelling a distance of 16.2 meters, which is faster than the
average time taken to manually navigate the channel of 152 seconds and
shorter than the average distance travelled of 17.1 meters.

7000 Fitness Scores over Generations

6500

6000

[\ \ \
i ,/ : \\ \\ \\
4500 \ \ \

4000 —— Best Fitness \
—— Average Fitness

Fitness Score
u o
o w
o (=]
o o

2 4 6 8 10 12 14
Generation

Figure 4.10: A graph displaying the performance of the model over genera-
tions on the basic channel

As shown by the graph, the average performance of the model decreased
over time, whilst the best performance remained relatively constant. This
demonstrates that the genetic algorithm used was not successful at improv-
ing the overall performance, suggesting the mutation or crossover functions
were decreasing the performance of the next generation, resulting in an
overall decline in average performance. Upon discovering this result, alter-
ing my genetic algorithm to ensure the individuals of the population were
brought closer to the top individual of the population increased the average
performance over time.

This was evident when testing my model on a more complex channel;
this channel was narrower, had natural walls containing curves and other
imperfections, and tighter turns with varying degrees of difficulty This
resulted in not only the average performance of the channel increasing, but
the best performance increasing as well, demonstrating the performance of
the genetic algorithm over time. The system performance on this channel
was relative to the performance when manually navigating the channel,
as the system averaged a time of 312 seconds and a distance of 39.0
meters, the manually navigated runs averaged 285 seconds and 38.4
meters. While this performance is marginally worse than the manually
navigated performance, this data is encouraging as it provides evidence

27

4 Results and Evaluation

that the autonomous system can replace a human pilot.

Fitness Scores over Generations

15000

14000
()
—_
5 13000
v}
ﬂ 12000/ —— Best Fitness
wn —— Average Fitness
2 11000
=
ic

10000

9000
2 4 6 8 10 12 14
Generation

Figure 4.11: A graph displaying the performance of the model over genera-
tions on a standard channel

While the performance on these two channels was excellent when test-
ing the model against a more complex channel with many difficult turns,
narrower sections and other complicated features [A.3] the model could
not successfully navigate this environment with the current population and
generation size of 20 and 15, respectively. However, when increasing the
population size to 50 and the generation size to 30, the results improved
greatly, and as the performance has not converged, this suggests that with
even more training time, the results would gain further performance. Even
this performance shows great promise for the navigation system.

Collecting the manually navigated performance scores required multiple
attempts to successfully navigate this channel without collisions, illustrating
the difficulty of this channel. The average time taken for the system to
navigate the channel was 705 seconds, travelling a distance of 71.4 meters.
This data is comparable to the manually navigated time of 650 seconds and
a distance of 67.4 meters, and further emphasises the use of this system
in real-world scenarios.

Fitness Scores over Generations Fitness Scores over Generations
25000 /\ /\ /\ 25000 F\ | /_\ “ / \ A /
© 20000 / “\ / \ / \ © 20000 /\ ‘ | /\ |
; A LT L
3 | [3 LI L.
5000 f \ —— Population Size: 20, Generation Size: 15 - Best itness. 15000 ‘ Population Size: 50, Generation Size: 30 - Best Fitness
a / ‘\ -~ Population Size: 20, Generation Size: 15 - Average Fitness. g ‘ / — Population Size: 50, Generation Swz‘e.‘ 30 - Average Fitness
.g 10000 / ‘\ / \\ / \\ g 10000 \ / _/ \/ \/
- / ‘ |
sooo| \/—777—/ —_— \ 5000 \—/ . b' \/\
7 1 - 7/,,,,.,,,,‘//\\\ N N A N —
2 a 6 10 12 14 0 5 10 20 25 30

8 15
Generation Generation

Figure 4.12: A graph displaying the performance of the model over genera-
tions on a complex channel

28

4 Results and Evaluation

An important objective of this project is to create a system capable of
navigating unseen channels and provide a generalised model which can
perform well across various environments. The objective was met as the
navigational best performance demonstrated when training on sequential
channels was greater than the initial training performance. The average
performance of this model ends up at approximately 9000; this is due to
the majority of individuals being able to navigate the whole channel, and
a few individuals not making the first turn. If further training occurred, this
average would improve, and all individuals could navigate the full channel.

Performance of Individuals in the Final Generation
80

40 &5,
) = 70
Fitness Scores over Generations E® -
_———————— - 30 602
14000 Q 9
25 503
o
o ©
S 12000 AN A = 20 . 4098
& N / - =
b —— Population Size: 20, Generation Size: 15 - Best Fitness. D15 o
9 —— Population Size: 20, Generation Size: 15 - Average Fit = 30
B N/ i i i | 2 g
c \ i @ 10 @
iE \ / / 7 202
8000 N\ / / a s
\ /
\. // \ s 10
6000 S~ ors 0

0 50 100 150 200 250 300

2 4 6 10 12 14 2
Time Taken (s)

8
Generation

Figure 4.13: A graph displaying the performance of the model over genera-
tions on a standard channel

When testing the model on an unseen realistic channel [A.4] the model
could accurately learn the channel’s features, leading to many successful
navigations of the channel and demonstrating a generalised system that
can easily be trained on any specific channel to navigate efficiently and

safely

Fitness Scores over Generations
10000

9000

8000

7000

Fitness Score

—— Best Fitness
—— Average Fitness

0 5 10 15 20 25
Generation

6000

Figure 4.14: A graph displaying the performance of the model over genera-
tions on a realistic, unseen channel

29

5 Conclusion

This project aimed to develop an adaptive, efficient, autonomous naviga-
tion system for vessels to utilise in channels such as ports, harbours, and
passages. The system leverages neural networks evolved with genetic al-
gorithms to maximise performance across various metrics, ensuring safety,
real-time responses, and efficiency. The resulting system provides insight
into the viability of combining convolutional neural networks and evolution-
ary methods for nautical navigation in dynamic, complex environments.

5.1 Project Outcomes

The project outcomes are based on the performance of each architecture
against the determined criteria outlined. The model was thoroughly eval-
uated based on metrics determined by the pre-defined success criteria,
including collision avoidance, navigational smoothness and efficiency, and
navigational progression of the channel.

The final system not only navigates a simple channel but also exceeds
this objective with the successful navigation of more complex channels
with a variety of complicated features and components. This navigation
of complex environments illustrates further success for this system as it
can accurately avoid collisions to ensure the vessel’s safety, which is this
project’s most important objective. Using physics-based simulations, the
results collected establish an underlying framework for practical applications
of MASS (Maritime Autonomous Surface Ships).

Another essential objective of this project was developing a generalised
system capable of safely navigating various channels with various environ-
ments it had not encountered before. Due to the system’s training process,
the system could accurately detect features such as turns, outcrops in the
channel walls, stacks and various other features, allowing the system to
navigate unseen channels successfully. In real-world scenarios, to ensure
safety before the system would be deployed to a new channel, it would be
trained to capture the channel’s features to improve performance; however,
the ability to successfully navigate an unseen channel creates a baseline
to further train the system on specific channels, which would ultimately

30

5 Conclusion

improve performance. This would also reduce the vulnerability of vessels
to navigational disruption, as demonstrated by the Ever Given incident in
the Suez Canal.

5.2 Limitations and Future Work

An objective this project could not complete was evaluating the system’s
performance in various weather conditions, such as different wind speeds
and directions and current strengths and directions. All channels are af-
fected by these factors, and evaluation against these metrics would provide
invaluable insight into real-world performance. Further testing into these
environmental factors would greatly improve the system’s performance
in real-world scenarios and provide insights to evaluate the performance
across all areas. If the system could successfully navigate a channel in
various weather conditions, then the system would successfully meet all
the pre-determined success criteria and outcomes.

Another objective this project did not complete was testing and evaluating
the system’s performance in different real-world scenarios. This would
have provided important data for comparison between other real-world
systems, gaining insight into the system’s real-world performance relative
to these systems. As this was an ambitious objective with a low likelihood
of occurring, this does not affect the project’s overall outcome, as the
previously completed objectives were more influential and impactful to the
project’s performance.

Although these simulations utilised a land-based robot to conduct naviga-
tion, the insights provided are still relevant as the motion controls reflect
those of a nautical vessel. If this project could be extended, the focus of the
evaluation would further align with real-world scenarios by initially training
and testing the land-based model in the real world, which would provide es-
sential performance data to evaluate the model. Further simulations based
on a nautical environment with a vessel would provide much-needed data
to gain additional insights into real-world performance in specific nautical
scenarios.

Overall, this project addresses the challenges of autonomous navigation
while ensuring that a balance between safety and efficiency is maintained.
This project also provides a baseline for further developments to expand
and improve performance in the real-world application of autonomous
nautical navigation.

31

A Appendix

A.1 Navigation Channel Designs

Figure A.1: Standard Channel Design

32

A Appendix

Figure A.2: Basic Channel Design

Figure A.3: Complex Channel Design

33

A Appendix

Figure A.4: Realistic Channel Design

34

A Appendix

A.2 Neural Network Designs

Class DDPGAgent:
Method: Initialise

- Initialise actor and critic networks
- Initialise target networks (copy weights from the main networks)
- Initialise optimisers for actor and critic
- Initialise replay buffer
- Set parameters for batch size, learning rates, etc.
- Initialise target network update rate (tau)

Method: Update
- If the buffer has enough samples:

- Sample a batch from the replay buffer

- Update critic network:
- Calculate the target Q-value using target actor and critic networks
- Compute loss between predicted Q-value and target Q-value
- Update critic network using the loss

- Update actor network:
- Compute loss by maximising the Q-value with the current actor and critic
- Update actor network using the loss

- Soft update target networks using tau

- Step optimisers for both actor and critic

Method: Act
- Input: current state
- Pass state through actor network to generate action
- Optionally add noise for exploration
- Clip action within valid action range
- Return action

Method: To
- Move actor and critic networks to the specified device (CPU or GPU)

Figure A.5: DDPG Agent Pseudocode

class Actor(nn.Module):
def _ init_ (self, state_dim, action_dim):

super(Actor, 59]-1:) '_init_() class Critic(nn.Module):

self.module = nn.Sequential(def __init_ (self, state_dim, action_dim):

- : super(Critic, self).__init

nn.Linear(state_dim, 128), per(’).dnit_()
self.module =nn.Sequential(

nn.ReLUQ), nn.Linear(state_dim + action_dim, 128),
nn.Linear(128, 64), nn.ReLU(),
nn.RelLU(), nn.Linear(128, 64),

. . . nn.RelLU(),
nn.Linear(64, action_dim),
n

5

.Linear(64, 32),
nn.Tanh() nn.RelU(),

) nn.Linear(32, action_dim)

def forward(self, state):

def forward(self, state, action):

return self.module(state) return self.module(torch.cat([state, action], 1))

Figure A.6: Actor and Critic Neural Network Architectures

35

A Appendix

Critic loss
with torch.no_grad():
next_actions = self.actor_target(next_state)
target_q = self.critic_target(next_state, next_actions)

target_q = reward + (1 - done) * self.gamma * target_g

current_q = self.critic(state, action)
critic_loss = nn.MSELoss()(current_g, target_q)
self.critic_optimizer.zero_grad()
critic_loss.backward()

self.critic_optimizer.step()

Actor loss

actor_loss = -self.critic(state, self.actor(state)).mean()
self.actor_optimizer.zero_grad()

actor_loss.backward()

self.actor_optimizer.step()

for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):

target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)

Figure A.7: Actor and Critic Loss Functions and Soft Update Functions

class ReplayBuffer():
def __init_ (self, capacity):

self.buffer = deque(maxlen=capacity)

def push(self, state, action, reward, next_state, done):

self.buffer.append((state, action, reward, next_state, done))

def sample(self, batch_size, device):
states, actions, rewards, next_states, dones = zip(*random.sample(self.buffer, batch_size))
return (torch.tensor(np.array(states)).to(device),
torch.tensor(np.array(actions)).to(device),
torch.tensor(np.array(rewards)).unsqueeze(1l).to(device),
torch.tensor(np.array(next_states)).to(device),

torch.tensor(np.array(dones)).unsqueeze(1l).to(device))
def __len__ (self):

return len(self.buffer)

Figure A.8: Replay Buffer Architectures

36

A Appendix

Class NeuralNetwork:
Method: Initialise:
- Define layers for input, hidden layers, and output
- Initialise layers with appropriate activation and normalisation functions

Method: Forward:
- Process input through network layers
- Return Output

Method: To:
- Move neural network to the specified device (CPU or GPU)

Figure A.9: Feed Forward Neural Network Pseudocode

class NeuralNetwork(nn.Module):
def __init__ (self, input_dim, output_dim, device, hidden_dim=128):

super(NeuralNetwork, self)._ _init__ ()

self.model = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.RelLU(),
nn.Linear(hidden_dim, 64),
nn.LayerNorm(64),
nn.RelLU(),
nn.Linear (64, output_dim),
nn.Tanh()

)

self.device = device

def forward(self, x):

return self.model(x)
def to(self, device):
self.device = device

self.model.to(device)

return self

Figure A.10: Basic Neural Network Architecture

37

A Appendix

class NeuralNetwork(nn.Module):
def __init_ (self):

super(NeuralNetwork, self)._ init_ ()

self.CNN = nn.Sequential(
nn.Convld(1l, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNormld(16),
nn.LeakyRelLU(©.1),

nn.Convld(16, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNormld(32),
nn.LeakyRelLU(®.1),

nn.Convld(32, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNormld(64),
nn.LeakyRelLU(®.1),

nn.Convld(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNormld(128),
nn.LeakyReLU(®.1),

nn.Convld(128, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNormld(128),
nn.LeakyRelLU(©.1),

with torch.no_grad():
dummy = torch.randn(l, 1, 360)
dummy_output = self.CNN(dummy)
self.flattened_dim = dummy_output.size(1) * dummy_output.size(2)

self.lstm = nn.LSTM(input_size=self.flattened_dim, hidden_size=64, batch_first=True)

self.FC = nn.Sequential(

nn.Linear(self.flattened_dim, 32),
nn.Dropout(@.2),
nn.LeakyRelLU(®.1),

nn.Linear(32, 16),
nn.Dropout(e.2),
nn.LeakyRelLU(©.1),

nn.Linear(16, 2),

nn.Tanh()

Figure A.11: Convolutional Neural Network Architecture

38

A Appendix

A.3 Genetic Algorithm Code

def select_parents(self, population, fitness_scores, num_parents, tournament_size=3):
sorted_population = sorted(zip(population, fitness_scores), key=lambda x: x[1], reverse=True)
top_population = sorted_population[:len(sorted_population) // 4]
parents = []
for _ in range(num_parents):
candidates = random.sample(top_population, tournament_size)
winner = max(candidates, key=lambda x: x[1])[@]
parents.append(winner)

return parents

Figure A.12: Parent Selection Code

def crossover(self, parents):
child = NeuralNetwork().to(self.device)
alpha = random.uniform(@.3, ©.7)

for parentl, parent2, new_child in zip(parents[@].parameters(), parents[1].parameters(), child.parameters()):

new_child.data = alpha * parentl.data + (1 - alpha) * parent2.data

return child
def mutate(self, child, generation)

decay_factor = max(@.5, 1.0 - generation / 100)
mutation_strength = .05 * decay_factor
with torch.no_grad():

for param in list(child.parameters()):

if random.random() < self.mutation_rate:

param.add_(torch.randn_like(param) * mutation_strength * param.std().item())

return child

Figure A.13: Crossover and Mutation Functions

39

A Appendix

self.metrics["distance_traveled"] += abs(linear) * 0.1

self.metrics["time_taken"] = (self.last_cmd_time - self.start_time).nanoseconds / 1e9

self.metrics['distance_from_goal'] = math.sqrt((self.goal_position_x - self.pose.position.x)**2 + (self.goal_position_y - self.pose.position.y)**2)
self.metrics['distance_from_start'] = math.sqrt((self.start_position_x - self.pose.position.x)**2 + (self.start_position_y - self.pose.position.y)**2)
self.metrics['total_linear_velocity'] += abs(linear) * ©.1

self.metrics['total_angular_velocity'] += abs(angular) * 0.1

self.metrics['oscillation_count'] += osciallation_count

distances = [np.linalg.norm(np.array([self.pose.position.x, self.pose.position.y]) - np.array(wp)) for wp in self.waypoints]
nearest_index = np.argmin(distances)
if nearest_index + 1 == self.metrics['waypoint_reached']:
self.waypoint_count += 1
else:
self.waypoint_count = @

self.metrics['waypoint_reached'] = nearest_index + 1

if self.metrics['distance_from_goal'] <= 0.5:
self.metrics['reached_goal'] = True

self.terminate_simulation('Goal Reached')

return
if self.metrics['oscillation_count'] == 25:
self.terminate_simulation('Too Many Oscillations')
return

if self.waypoint_count > 600:
self.metrics['stuck_at_waypoint'] = True
self.terminate_simulation('Stuck at Waypoint')

return

Figure A.14: Metrics Collection Process

self.metrics = {"distance_traveled": 0,
"collisions™: @,
"time_taken™: 09,
'distance_from_goal': float('inf'),
'reached_goal': False,
'distance_from_start': o,
'total_linear_velocity': o,
'total_angular_velocity': @,
'oscillation_count': @,
'waypoint_reached': 0,
'total_waypoints': len(self.waypoints) + 1,
'stuck_at_waypoint': False

}

Figure A.15: Metrics Collected throughout Navigation

40

A Appendix

if reached_goal:

fitness_score = total_waypoints * weights["waypoint_bonus"] * 2
fitness_score -= (time_taken * weights["time_weight"]) * waypoint_progress
fitness_score -= (distance_travelled * weights["distance_travelled_weight"]) * waypoint_progress
fitness_score *= movement_efficiency * weights["movement_efficiency_weight"]
if oscillation_count > 2:
fitness_score -= (1/(oscillation_count * weights["oscillation_count_weight"])) * waypoint_progress
if collisions > @:

fitness_score /= collisions * 2

else:

A.

1600

1400

Fitness Score
58 o o
8§ 3 8
8 8 8

~
o
3

e
o N
S o
S o

fitness_score = waypoint_reached * weights["waypoint_bonus"]
fitness_score -= (time_taken * weights["time_weight"]) * waypoint_progress
fitness_score -= (distance_travelled * weights["distance_travelled_weight"]) * waypoint_progress
fitness_score *= movement_efficiency * weights["movement_efficiency weight"]
fitness_score += total_linear_velocity * weights["forward_movement_weight"]
if oscillation_count > 2:
fitness_score -= (1/(oscillation_count * weights["oscillation_count_weight"])) * waypoint_progress
if collisions > @:
fitness_score /= collisions * 2
if stuck_at_waypoint:

fitness_score *= 0.75

Figure A.16: Fitness Calculations for simulations

4 Additional Performance Data

Performance of Individuals in the Final Generation,

~

Fitness Scores over Generations

—— Best Fitness
Average Fitness

00

o

v

IS
°
IS

°
w

Distance Traveled (m)
Waypoints Reached

N

/A/mlrkmv\»v\/\/\/\/
/ V\kg .
/' '\r\/\,\\ o ®
0 10 20 30 40 50 60
0 20 40 60 80 100 h
Generation Time Taken (s)

i

Figure A.17: Additional graphs showing the plateaus of the DDPG neural

network

41

A Appendix

Performance of Individuals in the Final Generation

40.0 e 425
: ; €375
Fitness Scores over Generations 40.0_
2500 ; 35.0 3
o 3755
| U325 53
° 2000 ‘% 350&)
S = 30.0 @
& 15001 o 325%
0 0 27.5 S
g 5 30.0 %
51000 / Las0 2
w
a 27.5
500 / ‘ D251
—— Best Fitness
— —— Average Fitness 20.01 ® 25.0

60 70 80 90 100 110 120
0 5 10 15 20 25 .
Generation Time Taken (s)

Figure A.18: Additional graphs showing a feed-forward neural network stuck
in local optima

42

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

U. Nations, Review of maritime transport 2024: Navigating maritime
chokepoints, Un-ilibrary.org, Oct. 2024. [Online]. Available: https
/lwww.un-ilibrary.org/content/books/9789211065923/read (visited on
19/11/2024).

M. Boviatsis, ‘M/v ever given: Legal assessment of the causes and
consequences of the accident, WIT Transactions on The Built En-
vironment, Nov. 2022. DOI: 10.2495/umt220161. [Online]. Avail-
able: https://www.witpress.com/Secure/elibrary/papers/UMT22/
UMT22016FU1.pdf.

Z.Wan, Y. Su, Z. Li, X. Zhang, Q. Zhang and Z. Wan, ‘Analysis of the
impact of suez canal blockage on the global shipping network, Ocean
& Coastal Management, vol. 245, pp. 106 868—106 868, Nov. 2023.
DOI: 10.1016/j.ocecoaman.2023.106868. (visited on 19/11/2024).

J. M.-y. Lee and E. Y.-c. Wong, ‘Suez canal blockage: An analysis of
legal impact, risks and liabilities to the global supply chain, MATEC
Web of Conferences, vol. 339, p. 01019, 2021. pol: 10.1051/
matecconf/202133901019. [Online]. Available: https://www.matec-
conferences . org/ articles / matecconf/pdf/ 2021 /08 / matecconf
istsml2021_01019.pdf.

F. Boats, Navigation at sea: From stars to the modern gps, Formula
Boats, Jun. 2019. [Online]. Available: https://www.formulaboats.com/
blog/history-of-navigation-at-sea-from-stars-to-the-modern-day-
gps/.

E. W. Anderson, Navigation | technology. 2019. [Online]. Available:
https://www.britannica.com/technology/navigation-technology.

A. Tikkanen, Wind rose | meteorology, Encyclopedia Britannica. [On-
line]. Available: https://www.britannica.com/science/wind-rose.

A. Tikkanen, Portolan chart | britannica, www.britannica.com. [On-
line]. Available: https://www.britannica.com/technology/portolan-
chart.

Latitude and longitude, Open Learning, 2019. [Online]. Available:
https://www.open.edu/openlearn/history-the-arts/history/history-
science-technology - and- medicine/history - science/latitude - and-
longitude/.

43

https://www.un-ilibrary.org/content/books/9789211065923/read
https://www.un-ilibrary.org/content/books/9789211065923/read
https://doi.org/10.2495/umt220161
https://www.witpress.com/Secure/elibrary/papers/UMT22/UMT22016FU1.pdf
https://www.witpress.com/Secure/elibrary/papers/UMT22/UMT22016FU1.pdf
https://doi.org/10.1016/j.ocecoaman.2023.106868
https://doi.org/10.1051/matecconf/202133901019
https://doi.org/10.1051/matecconf/202133901019
https://www.matec-conferences.org/articles/matecconf/pdf/2021/08/matecconf_istsml2021_01019.pdf
https://www.matec-conferences.org/articles/matecconf/pdf/2021/08/matecconf_istsml2021_01019.pdf
https://www.matec-conferences.org/articles/matecconf/pdf/2021/08/matecconf_istsml2021_01019.pdf
https://www.formulaboats.com/blog/history-of-navigation-at-sea-from-stars-to-the-modern-day-gps/
https://www.formulaboats.com/blog/history-of-navigation-at-sea-from-stars-to-the-modern-day-gps/
https://www.formulaboats.com/blog/history-of-navigation-at-sea-from-stars-to-the-modern-day-gps/
https://www.britannica.com/technology/navigation-technology
https://www.britannica.com/science/wind-rose
https://www.britannica.com/technology/portolan-chart
https://www.britannica.com/technology/portolan-chart
https://www.open.edu/openlearn/history-the-arts/history/history-science-technology-and-medicine/history-science/latitude-and-longitude/
https://www.open.edu/openlearn/history-the-arts/history/history-science-technology-and-medicine/history-science/latitude-and-longitude/
https://www.open.edu/openlearn/history-the-arts/history/history-science-technology-and-medicine/history-science/latitude-and-longitude/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Bibliography

T. Lake, In-depth: The microscopic magic of h4, harrison’s first sea
watch | sjx watches, watchesbysjx.com, Sep. 2019. [Online]. Avail-
able: https://watchesbysjx.com/2019/09/john - harrison - marine -
chronometer-h4-diamond-pallets.html.

Dead reckoning | navigation, Encyclopedia Britannica. [Online]. Avail-
able: https ://www. britannica.com/technology/dead - reckoning -
navigation.

gyrocompass | Alignment Development | Britannica. 2019. [Online].
Available: https://www.britannica.com/technology/gyrocompass.

N. Greenwood, From paper charts to satellites: A journey through the
evolution of marine navigation, Clearseas.org, 2024. [Online]. Avail-
able: https://clearseas.org/insights/evolution-of-marine-navigation/.

Hexagon, What are global navigation satellite systems? novatel.com,
2024. [Online]. Available: https://novatel.com/tech-talk/an-introductior -
to-gnss/what-are-global-navigation-satellite-systems-gnss.

O. of Coast Survey National Oceanic and A. Administration, Nautical

chart data built for modern navigational systems, nauticalcharts.noaa.gov.

[Online]. Available: https://nauticalcharts.noaa.gov/charts/noaa-
enc.html.

K. C, 30 types of navigation equipment and resources used on-
board modern ships, Marine Insight, Mar. 2019. [Online]. Available:
https ://www.marineinsight.com/marine - navigation/30 - types - of -
navigational - equipment- and- resources - used - onboard - modern -
ships/.

Understanding the autopilot system on ships - sea news, Sea News
- Global Maritime News, Mar. 2018. [Online]. Available: https://
seanews.co.uk/shipping-news/understanding-the-autopilot-system-
on-ships/ (visited on 21/11/2024).

Port pilots: Experience and poise in all conditions — professional
mariner, Professionalmariner.com, 2023. [Online]. Available: https:
//professionalmariner.com/article/port-pilots-experience-and-poise-
in-all-conditions/ (visited on 21/11/2024).

IMO, Autonomous shipping, www.imo.org, 2024. [Online]. Available:
https://www.imo.org/en/MediaCentre/Hot Topics/Pages/Autonomous-
shipping.aspx.

B. Hayden, The state of autonomous vessels, Workboat.com, May
2024. [Online]. Available: https://www.workboat.com/the-state-of-
autonomous-vessels.

R. Mckie, Maritime autonomous surface ships (mass) and sar, Inter-
national Maritime Rescue Federation, Nov. 2023. [Online]. Available:
https ://www. international - maritime - rescue .org/News/maritime -
autonomous-surface-ships-mass-and-sar.

44

https://watchesbysjx.com/2019/09/john-harrison-marine-chronometer-h4-diamond-pallets.html
https://watchesbysjx.com/2019/09/john-harrison-marine-chronometer-h4-diamond-pallets.html
https://www.britannica.com/technology/dead-reckoning-navigation
https://www.britannica.com/technology/dead-reckoning-navigation
https://www.britannica.com/technology/gyrocompass
https://clearseas.org/insights/evolution-of-marine-navigation/
https://novatel.com/tech-talk/an-introduction-to-gnss/what-are-global-navigation-satellite-systems-gnss
https://novatel.com/tech-talk/an-introduction-to-gnss/what-are-global-navigation-satellite-systems-gnss
https://nauticalcharts.noaa.gov/charts/noaa-enc.html
https://nauticalcharts.noaa.gov/charts/noaa-enc.html
https://www.marineinsight.com/marine-navigation/30-types-of-navigational-equipment-and-resources-used-onboard-modern-ships/
https://www.marineinsight.com/marine-navigation/30-types-of-navigational-equipment-and-resources-used-onboard-modern-ships/
https://www.marineinsight.com/marine-navigation/30-types-of-navigational-equipment-and-resources-used-onboard-modern-ships/
https://seanews.co.uk/shipping-news/understanding-the-autopilot-system-on-ships/
https://seanews.co.uk/shipping-news/understanding-the-autopilot-system-on-ships/
https://seanews.co.uk/shipping-news/understanding-the-autopilot-system-on-ships/
https://professionalmariner.com/article/port-pilots-experience-and-poise-in-all-conditions/
https://professionalmariner.com/article/port-pilots-experience-and-poise-in-all-conditions/
https://professionalmariner.com/article/port-pilots-experience-and-poise-in-all-conditions/
https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx
https://www.imo.org/en/MediaCentre/HotTopics/Pages/Autonomous-shipping.aspx
https://www.workboat.com/the-state-of-autonomous-vessels
https://www.workboat.com/the-state-of-autonomous-vessels
https://www.international-maritime-rescue.org/News/maritime-autonomous-surface-ships-mass-and-sar
https://www.international-maritime-rescue.org/News/maritime-autonomous-surface-ships-mass-and-sar

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Bibliography

D. Schmidt, Hands free: Avikus’s autonomous navigation system
| yachting, Yachting, Jun. 2023. [Online]. Available: https://www|
yachtingmagazine.com/electronics/avikus-autonomous-navigation-
system/ (visited on 02/12/2024).

Autonomous navigation system, Maritime Robotics, 2024. [Online].
Available: https://www.maritimerobotics.com/autonomous-navigation-
system ? utm_source = unmannedsystemstechnology.com & utm_
medium=referral (visited on 02/12/2024).

L. Chen, P. Yang, S. Li, K. Liu, K. Wang and X. Zhou, ‘Online modeling
and prediction of maritime autonomous surface ship maneuvering
motion under ocean waves, Ocean engineering (Print), vol. 276,
pp. 114183-114 183, May 2023. poI: 10.1016/j.0oceaneng.2023|
114183 (visited on 11/04/2024).

S. Guo, X. Zhang, Y. Zheng and Y. Du, ‘An autonomous path planning
model for unmanned ships based on deep reinforcement learning,
Sensors, vol. 20, p. 426, Jan. 2020. bol1: 10.3390/s20020426. (visited
on 26/04/2020).

A. Gupta, ‘Machine learning algorithms in autonomous driving,” Mar.
2018. [Online]. Available: https ://www. iiot- world.com/artificial -
intelligence-ml/machine-learning/machine-learning-algorithms-in-
autonomous-driving/.

W. Koehrsen, Introduction to bayesian linear regression, Medium,
Apr. 2018. [Online]. Available: https ://towardsdatascience.com/
introduction-to-bayesian-linear-regression-e66e60791ea7.

N. Beheshti, Random forest regression, Medium, Mar. 2022. [Online].
Available: https://towardsdatascience.com/random-forest-regression-
5{605132d19d.

R. Tatiwar, ‘Neuroevolution: Evolving neural network with genetic
algorithms,” Dec. 2023. [Online]. Available: https://medium.com/
@roopal.tatiwar20/neuroevolution- evolving- neural - network- with-
genetic-algorithms-8ca2165ad04c.

D. Menges, T. Tengesdal and A. Rasheed, ‘Nonlinear model predict-
ive control for enhanced navigation of autonomous surface vessels,
2024. [Online]. Available: https://arxiv.org/abs/2403.19028 (visited on
04/12/2024).

C. Lee, D. Chung, J. Kim and J. Kim, ‘Nonlinear model predictive con-
trol with obstacle avoidance constraints for autonomous navigation
in a canal environment, 2023. [Online]. Available: https://arxiv.org/
abs/2307.09845.

45

https://www.yachtingmagazine.com/electronics/avikus-autonomous-navigation-system/
https://www.yachtingmagazine.com/electronics/avikus-autonomous-navigation-system/
https://www.yachtingmagazine.com/electronics/avikus-autonomous-navigation-system/
https://www.maritimerobotics.com/autonomous-navigation-system?utm_source=unmannedsystemstechnology.com&utm_medium=referral
https://www.maritimerobotics.com/autonomous-navigation-system?utm_source=unmannedsystemstechnology.com&utm_medium=referral
https://www.maritimerobotics.com/autonomous-navigation-system?utm_source=unmannedsystemstechnology.com&utm_medium=referral
https://doi.org/10.1016/j.oceaneng.2023.114183
https://doi.org/10.1016/j.oceaneng.2023.114183
https://doi.org/10.3390/s20020426
https://www.iiot-world.com/artificial-intelligence-ml/machine-learning/machine-learning-algorithms-in-autonomous-driving/
https://www.iiot-world.com/artificial-intelligence-ml/machine-learning/machine-learning-algorithms-in-autonomous-driving/
https://www.iiot-world.com/artificial-intelligence-ml/machine-learning/machine-learning-algorithms-in-autonomous-driving/
https://towardsdatascience.com/introduction-to-bayesian-linear-regression-e66e60791ea7
https://towardsdatascience.com/introduction-to-bayesian-linear-regression-e66e60791ea7
https://towardsdatascience.com/random-forest-regression-5f605132d19d
https://towardsdatascience.com/random-forest-regression-5f605132d19d
https://medium.com/@roopal.tatiwar20/neuroevolution-evolving-neural-network-with-genetic-algorithms-8ca2165ad04c
https://medium.com/@roopal.tatiwar20/neuroevolution-evolving-neural-network-with-genetic-algorithms-8ca2165ad04c
https://medium.com/@roopal.tatiwar20/neuroevolution-evolving-neural-network-with-genetic-algorithms-8ca2165ad04c
https://arxiv.org/abs/2403.19028
https://arxiv.org/abs/2307.09845
https://arxiv.org/abs/2307.09845

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Bibliography

J. C. Meyers, T. S. McCord, Z. Zhang and H. Singh, ‘Towards a
colregs compliant autonomous surface vessel in a constrained chan-
nel, 2022. [Online]. Available: https://arxiv.org/abs/2204.12906
(visited on 04/12/2024).

N. Hamid, W. Dharmawan and H. Nambo, ‘Neural network-based
genetic algorithm for autonomous boat pathfinding, Neural Network-
based Genetic Algorithm for Autonomous Boat Pathfinding, pp. 497—
502, Aug. 2023. DOI:([10.1109/ickii58656.2023.10332606. [Online].
Available: https://ieeexplore.ieee.org/document/10332606 (visited on
04/12/2024).

S. Grigorescu, B. Trasnea, L. Marina, A. Vasilcoi and T. Cocias,
‘Neurotrajectory: A neuroevolutionary approach to local state tra-
jectory learning for autonomous vehicles, 2019. [Online]. Available:
https://arxiv.org/abs/1906.10971 (visited on 04/12/2024).

F. Stapleton, E. Galvan, G. Sistu and S. Yogamani, ‘Neuroevolution-
ary multi-objective approaches to trajectory prediction in autonomous
vehicles, 2022. [Online]. Available: https://arxiv.org/abs/2205.02105
(visited on 04/12/2024).

M. M. Zarrar, Q. Weng, B. Yerjan, A. Soyyigit and H. Yun, ‘Tinylid-
arnet: 2d lidar-based end-to-end deep learning model for fitenth
autonomous racing, 2023. [Online]. Available: https://arxiv.org/html/
2410.07447| (visited on 26/03/2025).

O. Robotics, Gazebo, gazebosim.org. [Online]. Available: https://
gazebosim.org/home.

Ros: Home, ros.org. [Online]. Available: https://ros.org/.

46

https://arxiv.org/abs/2204.12906
https://doi.org/10.1109/ickii58656.2023.10332606
https://ieeexplore.ieee.org/document/10332606
https://arxiv.org/abs/1906.10971
https://arxiv.org/abs/2205.02105
https://arxiv.org/html/2410.07447
https://arxiv.org/html/2410.07447
https://gazebosim.org/home
https://gazebosim.org/home
https://ros.org/

	Executive Summary
	Statement of Ethics
	Introduction
	Motivation
	Disruptions due to navigational issues
	Aiding Recreational Sailors

	Success Criteria and Objectives

	Background and Literature Review
	Background Information
	Navigational Systems
	Neural Networks Evolved with Genetic Algorithms

	Literature Review

	Methodology and Implementation
	Neptune's Simulation Environment and Robot Controller
	Neptune's Neural Network
	Deep Deterministic Policy Gradient Network
	Feed-Forward Neural Network
	Convolutional Neural Network

	Neptune's Genetic Algorithm
	Training the Neptune system

	Results and Evaluation
	Neural Network Architecture Evaluation
	Benefits of Pre-training the Neural Network
	Neptune's Final Performance

	Conclusion
	Project Outcomes
	Limitations and Future Work

	Appendix
	Navigation Channel Designs
	Neural Network Designs
	Genetic Algorithm Code
	Additional Performance Data

